Loading…

Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV

This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/CAA journal of automatica sinica 2015-01, Vol.2 (1), p.56-64
Main Authors: Peng, Cheng, Bai, Yue, Gong, Xun, Gao, Qingjia, Zhao, Changjun, Tian, Yantao
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2858-26fef6313c45c485fefc2752cb29e9aa0a786f72813acd09aac5bbb815449edd3
cites
container_end_page 64
container_issue 1
container_start_page 56
container_title IEEE/CAA journal of automatica sinica
container_volume 2
creator Peng, Cheng
Bai, Yue
Gong, Xun
Gao, Qingjia
Zhao, Changjun
Tian, Yantao
description This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller(BSMC) with adaptive radial basis function neural network(RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances.
doi_str_mv 10.1109/JAS.2015.7032906
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JAS_2015_7032906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90687266504849534849484856</cqvip_id><ieee_id>7032906</ieee_id><wanfj_id>zdhxb_ywb201501008</wanfj_id><sourcerecordid>zdhxb_ywb201501008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2858-26fef6313c45c485fefc2752cb29e9aa0a786f72813acd09aac5bbb815449edd3</originalsourceid><addsrcrecordid>eNpFkd9LwzAQx4MoOObeBV8Cvgmd-dkmj3P4kznBOV9DmqZbZ21q2jn1rzd1Y0Iud7n73AXuC8ApRkOMkbx8GM2GBGE-TBAlEsUHoEdCEEmSsMN9HMfHYNA0K4QQJjyJJeuB90eX2bKoFlBXGXx26bpp4ZU2b01r67rLz8oi63wHwrGrWu9KuCnaJRxlum6LTwufr26mU5g7DzWcuk9bBk5_FbqE18Vi2UbetaE2H72egKNcl40d7HwfzG-uX8Z30eTp9n48mkSGCC4iEuc2jymmhnHDBA8vQxJOTEqklVojnYg4T4jAVJsMhYzhaZoKzBmTNstoH1xs5250letqoVZu7avwo_rJll-p-t6k3boQRkgE-HwL1959rG3T_tM44ZKyv9MHaEsZ75rG21zVvnjX_lthpDoRVBBBdVPVToTQcrZtKay1e_y_SncDl65afIQV75FQFkmQiyMmmOS0u4MJHtNf3GKQrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759349349</pqid></control><display><type>article</type><title>Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV</title><source>IEEE Xplore (Online service)</source><creator>Peng, Cheng ; Bai, Yue ; Gong, Xun ; Gao, Qingjia ; Zhao, Changjun ; Tian, Yantao</creator><creatorcontrib>Peng, Cheng ; Bai, Yue ; Gong, Xun ; Gao, Qingjia ; Zhao, Changjun ; Tian, Yantao</creatorcontrib><description>This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller(BSMC) with adaptive radial basis function neural network(RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2015.7032906</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Adaptation models ; adaptive radial basis function neural network ; Aerodynamics ; Attitude control ; Backstepping ; Coaxial eight-rotor UAV ; external disturbances ; model uncertainties ; Neural networks ; robust backstepping sliding mode controller ; Robustness ; Rotors ; Uncertainty ; Unmanned aerial vehicles</subject><ispartof>IEEE/CAA journal of automatica sinica, 2015-01, Vol.2 (1), p.56-64</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2858-26fef6313c45c485fefc2752cb29e9aa0a786f72813acd09aac5bbb815449edd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/61504X/61504X.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7032906$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Peng, Cheng</creatorcontrib><creatorcontrib>Bai, Yue</creatorcontrib><creatorcontrib>Gong, Xun</creatorcontrib><creatorcontrib>Gao, Qingjia</creatorcontrib><creatorcontrib>Zhao, Changjun</creatorcontrib><creatorcontrib>Tian, Yantao</creatorcontrib><title>Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><description>This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller(BSMC) with adaptive radial basis function neural network(RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances.</description><subject>Adaptation models</subject><subject>adaptive radial basis function neural network</subject><subject>Aerodynamics</subject><subject>Attitude control</subject><subject>Backstepping</subject><subject>Coaxial eight-rotor UAV</subject><subject>external disturbances</subject><subject>model uncertainties</subject><subject>Neural networks</subject><subject>robust backstepping sliding mode controller</subject><subject>Robustness</subject><subject>Rotors</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkd9LwzAQx4MoOObeBV8Cvgmd-dkmj3P4kznBOV9DmqZbZ21q2jn1rzd1Y0Iud7n73AXuC8ApRkOMkbx8GM2GBGE-TBAlEsUHoEdCEEmSsMN9HMfHYNA0K4QQJjyJJeuB90eX2bKoFlBXGXx26bpp4ZU2b01r67rLz8oi63wHwrGrWu9KuCnaJRxlum6LTwufr26mU5g7DzWcuk9bBk5_FbqE18Vi2UbetaE2H72egKNcl40d7HwfzG-uX8Z30eTp9n48mkSGCC4iEuc2jymmhnHDBA8vQxJOTEqklVojnYg4T4jAVJsMhYzhaZoKzBmTNstoH1xs5250letqoVZu7avwo_rJll-p-t6k3boQRkgE-HwL1959rG3T_tM44ZKyv9MHaEsZ75rG21zVvnjX_lthpDoRVBBBdVPVToTQcrZtKay1e_y_SncDl65afIQV75FQFkmQiyMmmOS0u4MJHtNf3GKQrA</recordid><startdate>20150110</startdate><enddate>20150110</enddate><creator>Peng, Cheng</creator><creator>Bai, Yue</creator><creator>Gong, Xun</creator><creator>Gao, Qingjia</creator><creator>Zhao, Changjun</creator><creator>Tian, Yantao</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>University of Chinese Academy of Sciences, Beijing 100039, China</general><general>Department of Control Science and Engineering, Jilin University,Changchun 130025, China%Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China%Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150110</creationdate><title>Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV</title><author>Peng, Cheng ; Bai, Yue ; Gong, Xun ; Gao, Qingjia ; Zhao, Changjun ; Tian, Yantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2858-26fef6313c45c485fefc2752cb29e9aa0a786f72813acd09aac5bbb815449edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation models</topic><topic>adaptive radial basis function neural network</topic><topic>Aerodynamics</topic><topic>Attitude control</topic><topic>Backstepping</topic><topic>Coaxial eight-rotor UAV</topic><topic>external disturbances</topic><topic>model uncertainties</topic><topic>Neural networks</topic><topic>robust backstepping sliding mode controller</topic><topic>Robustness</topic><topic>Rotors</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Cheng</creatorcontrib><creatorcontrib>Bai, Yue</creatorcontrib><creatorcontrib>Gong, Xun</creatorcontrib><creatorcontrib>Gao, Qingjia</creatorcontrib><creatorcontrib>Zhao, Changjun</creatorcontrib><creatorcontrib>Tian, Yantao</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Cheng</au><au>Bai, Yue</au><au>Gong, Xun</au><au>Gao, Qingjia</au><au>Zhao, Changjun</au><au>Tian, Yantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><date>2015-01-10</date><risdate>2015</risdate><volume>2</volume><issue>1</issue><spage>56</spage><epage>64</epage><pages>56-64</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller(BSMC) with adaptive radial basis function neural network(RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2015.7032906</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2015-01, Vol.2 (1), p.56-64
issn 2329-9266
2329-9274
language eng
recordid cdi_crossref_primary_10_1109_JAS_2015_7032906
source IEEE Xplore (Online service)
subjects Adaptation models
adaptive radial basis function neural network
Aerodynamics
Attitude control
Backstepping
Coaxial eight-rotor UAV
external disturbances
model uncertainties
Neural networks
robust backstepping sliding mode controller
Robustness
Rotors
Uncertainty
Unmanned aerial vehicles
title Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Robust%20Backstepping%20Sliding%20Mode%20Control%20with%20Adaptive%20RBFNN%20for%20a%20Novel%20Coaxial%20Eight-rotor%20UAV&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Peng,%20Cheng&rft.date=2015-01-10&rft.volume=2&rft.issue=1&rft.spage=56&rft.epage=64&rft.pages=56-64&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2015.7032906&rft_dat=%3Cwanfang_jour_cross%3Ezdhxb_ywb201501008%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2858-26fef6313c45c485fefc2752cb29e9aa0a786f72813acd09aac5bbb815449edd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759349349&rft_id=info:pmid/&rft_cqvip_id=90687266504849534849484856&rft_ieee_id=7032906&rft_wanfj_id=zdhxb_ywb201501008&rfr_iscdi=true