Loading…

Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals

This paper proposes a novel adaptive dictionary (AD) reconstruction scheme to improve the performance of compressed sensing (CS) with electrocardiogram signals (ECG). The method is based on the use of multiple dictionaries, created using dictionary learning (DL) techniques for CS signal reconstructi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2017-05, Vol.21 (3), p.645-654
Main Authors: Craven, Darren, McGinley, Brian, Kilmartin, Liam, Glavin, Martin, Jones, Edward
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913
cites cdi_FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913
container_end_page 654
container_issue 3
container_start_page 645
container_title IEEE journal of biomedical and health informatics
container_volume 21
creator Craven, Darren
McGinley, Brian
Kilmartin, Liam
Glavin, Martin
Jones, Edward
description This paper proposes a novel adaptive dictionary (AD) reconstruction scheme to improve the performance of compressed sensing (CS) with electrocardiogram signals (ECG). The method is based on the use of multiple dictionaries, created using dictionary learning (DL) techniques for CS signal reconstruction. The modified reconstruction framework is a two-stage process that leverages information about the signal from an initial signal reconstruction stage. By identifying whether a QRS complex is present and if so, determining a location estimate of the QRS, the most appropriate dictionary is selected and a second stage more refined signal reconstruction can be obtained. The performance of the proposed algorithm is compared with state-of-the-art CS implementations in the literature, as well as the set partitioning in hierarchical trees (SPIHT) wavelet-based lossy compression algorithm. The results indicate that the proposed reconstruction scheme outperforms all existing CS implementations in terms of signal fidelity at each compression ratio tested. The performance of the proposed approach also compares favorably with SPIHT in terms of signal reconstruction quality. Furthermore, an analysis of the overall power consumption of the proposed ECG compression framework as would be used in a body area network (BAN) demonstrates positive results for the proposed CS approach when compared with existing CS techniques and SPIHT.
doi_str_mv 10.1109/JBHI.2016.2531182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2016_2531182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7409938</ieee_id><sourcerecordid>1897024313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobsz9ASJIwRdfNnNJmyaPs85NGQhOn0vaXkfH2sykFfzvzdyPB_PyDXefO44PIddAxwBUPbw-zl_GjIIYs4gDSHZG-gyEHDFG5fnxDyrskaFza-qf9CUlLkmP-aSK8z6ZTwq9batvDJ6qvK1Mo-1P8I65aVxru79KUBobJKbeWnQOi2CJjauaVWDKYJrMgmW1avTGXZGL0gcODzkgn8_Tj2Q-WrzNXpLJYpRzFbcjLIsw51kGXAimUIcMkOkyykBqXtAy1yj9cZFiGGsqIpUDV7IQGFMZCQV8QO73e7fWfHXo2rSuXI6bjW7QdC71IoSIQIahR-_-oWvT2d2xnlIxZSEH7inYU7k1zlks062taq8hBZruTKc70-nOdHow7WduD5u7rMbiNHH06oGbPVAh4qkdh1QpLvkvq6R__g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897024313</pqid></control><display><type>article</type><title>Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Craven, Darren ; McGinley, Brian ; Kilmartin, Liam ; Glavin, Martin ; Jones, Edward</creator><creatorcontrib>Craven, Darren ; McGinley, Brian ; Kilmartin, Liam ; Glavin, Martin ; Jones, Edward</creatorcontrib><description>This paper proposes a novel adaptive dictionary (AD) reconstruction scheme to improve the performance of compressed sensing (CS) with electrocardiogram signals (ECG). The method is based on the use of multiple dictionaries, created using dictionary learning (DL) techniques for CS signal reconstruction. The modified reconstruction framework is a two-stage process that leverages information about the signal from an initial signal reconstruction stage. By identifying whether a QRS complex is present and if so, determining a location estimate of the QRS, the most appropriate dictionary is selected and a second stage more refined signal reconstruction can be obtained. The performance of the proposed algorithm is compared with state-of-the-art CS implementations in the literature, as well as the set partitioning in hierarchical trees (SPIHT) wavelet-based lossy compression algorithm. The results indicate that the proposed reconstruction scheme outperforms all existing CS implementations in terms of signal fidelity at each compression ratio tested. The performance of the proposed approach also compares favorably with SPIHT in terms of signal reconstruction quality. Furthermore, an analysis of the overall power consumption of the proposed ECG compression framework as would be used in a body area network (BAN) demonstrates positive results for the proposed CS approach when compared with existing CS techniques and SPIHT.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2016.2531182</identifier><identifier>PMID: 26890933</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Body area networks ; Compressed sensing ; Compressed sensing (CS) ; Compression ; Compression ratio ; Dictionaries ; dictionary learning (DL) ; EKG ; electrocardiogram (ECG) compression ; Electrocardiography ; Electrocardiography - methods ; Humans ; Information processing ; Machine Learning ; Power consumption ; Signal processing ; Signal Processing, Computer-Assisted ; Signal reconstruction ; Training ; Wavelet analysis ; wireless body area networks (BANs) ; Wireless communication ; Wireless sensor networks ; Wireless Technology</subject><ispartof>IEEE journal of biomedical and health informatics, 2017-05, Vol.21 (3), p.645-654</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913</citedby><cites>FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7409938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26890933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Craven, Darren</creatorcontrib><creatorcontrib>McGinley, Brian</creatorcontrib><creatorcontrib>Kilmartin, Liam</creatorcontrib><creatorcontrib>Glavin, Martin</creatorcontrib><creatorcontrib>Jones, Edward</creatorcontrib><title>Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>This paper proposes a novel adaptive dictionary (AD) reconstruction scheme to improve the performance of compressed sensing (CS) with electrocardiogram signals (ECG). The method is based on the use of multiple dictionaries, created using dictionary learning (DL) techniques for CS signal reconstruction. The modified reconstruction framework is a two-stage process that leverages information about the signal from an initial signal reconstruction stage. By identifying whether a QRS complex is present and if so, determining a location estimate of the QRS, the most appropriate dictionary is selected and a second stage more refined signal reconstruction can be obtained. The performance of the proposed algorithm is compared with state-of-the-art CS implementations in the literature, as well as the set partitioning in hierarchical trees (SPIHT) wavelet-based lossy compression algorithm. The results indicate that the proposed reconstruction scheme outperforms all existing CS implementations in terms of signal fidelity at each compression ratio tested. The performance of the proposed approach also compares favorably with SPIHT in terms of signal reconstruction quality. Furthermore, an analysis of the overall power consumption of the proposed ECG compression framework as would be used in a body area network (BAN) demonstrates positive results for the proposed CS approach when compared with existing CS techniques and SPIHT.</description><subject>Algorithms</subject><subject>Body area networks</subject><subject>Compressed sensing</subject><subject>Compressed sensing (CS)</subject><subject>Compression</subject><subject>Compression ratio</subject><subject>Dictionaries</subject><subject>dictionary learning (DL)</subject><subject>EKG</subject><subject>electrocardiogram (ECG) compression</subject><subject>Electrocardiography</subject><subject>Electrocardiography - methods</subject><subject>Humans</subject><subject>Information processing</subject><subject>Machine Learning</subject><subject>Power consumption</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal reconstruction</subject><subject>Training</subject><subject>Wavelet analysis</subject><subject>wireless body area networks (BANs)</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>Wireless Technology</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQx4Mobsz9ASJIwRdfNnNJmyaPs85NGQhOn0vaXkfH2sykFfzvzdyPB_PyDXefO44PIddAxwBUPbw-zl_GjIIYs4gDSHZG-gyEHDFG5fnxDyrskaFza-qf9CUlLkmP-aSK8z6ZTwq9batvDJ6qvK1Mo-1P8I65aVxru79KUBobJKbeWnQOi2CJjauaVWDKYJrMgmW1avTGXZGL0gcODzkgn8_Tj2Q-WrzNXpLJYpRzFbcjLIsw51kGXAimUIcMkOkyykBqXtAy1yj9cZFiGGsqIpUDV7IQGFMZCQV8QO73e7fWfHXo2rSuXI6bjW7QdC71IoSIQIahR-_-oWvT2d2xnlIxZSEH7inYU7k1zlks062taq8hBZruTKc70-nOdHow7WduD5u7rMbiNHH06oGbPVAh4qkdh1QpLvkvq6R__g</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Craven, Darren</creator><creator>McGinley, Brian</creator><creator>Kilmartin, Liam</creator><creator>Glavin, Martin</creator><creator>Jones, Edward</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals</title><author>Craven, Darren ; McGinley, Brian ; Kilmartin, Liam ; Glavin, Martin ; Jones, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Body area networks</topic><topic>Compressed sensing</topic><topic>Compressed sensing (CS)</topic><topic>Compression</topic><topic>Compression ratio</topic><topic>Dictionaries</topic><topic>dictionary learning (DL)</topic><topic>EKG</topic><topic>electrocardiogram (ECG) compression</topic><topic>Electrocardiography</topic><topic>Electrocardiography - methods</topic><topic>Humans</topic><topic>Information processing</topic><topic>Machine Learning</topic><topic>Power consumption</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal reconstruction</topic><topic>Training</topic><topic>Wavelet analysis</topic><topic>wireless body area networks (BANs)</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craven, Darren</creatorcontrib><creatorcontrib>McGinley, Brian</creatorcontrib><creatorcontrib>Kilmartin, Liam</creatorcontrib><creatorcontrib>Glavin, Martin</creatorcontrib><creatorcontrib>Jones, Edward</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craven, Darren</au><au>McGinley, Brian</au><au>Kilmartin, Liam</au><au>Glavin, Martin</au><au>Jones, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2017-05</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>645</spage><epage>654</epage><pages>645-654</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>This paper proposes a novel adaptive dictionary (AD) reconstruction scheme to improve the performance of compressed sensing (CS) with electrocardiogram signals (ECG). The method is based on the use of multiple dictionaries, created using dictionary learning (DL) techniques for CS signal reconstruction. The modified reconstruction framework is a two-stage process that leverages information about the signal from an initial signal reconstruction stage. By identifying whether a QRS complex is present and if so, determining a location estimate of the QRS, the most appropriate dictionary is selected and a second stage more refined signal reconstruction can be obtained. The performance of the proposed algorithm is compared with state-of-the-art CS implementations in the literature, as well as the set partitioning in hierarchical trees (SPIHT) wavelet-based lossy compression algorithm. The results indicate that the proposed reconstruction scheme outperforms all existing CS implementations in terms of signal fidelity at each compression ratio tested. The performance of the proposed approach also compares favorably with SPIHT in terms of signal reconstruction quality. Furthermore, an analysis of the overall power consumption of the proposed ECG compression framework as would be used in a body area network (BAN) demonstrates positive results for the proposed CS approach when compared with existing CS techniques and SPIHT.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26890933</pmid><doi>10.1109/JBHI.2016.2531182</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2017-05, Vol.21 (3), p.645-654
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2016_2531182
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Body area networks
Compressed sensing
Compressed sensing (CS)
Compression
Compression ratio
Dictionaries
dictionary learning (DL)
EKG
electrocardiogram (ECG) compression
Electrocardiography
Electrocardiography - methods
Humans
Information processing
Machine Learning
Power consumption
Signal processing
Signal Processing, Computer-Assisted
Signal reconstruction
Training
Wavelet analysis
wireless body area networks (BANs)
Wireless communication
Wireless sensor networks
Wireless Technology
title Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dictionary%20Reconstruction%20for%20Compressed%20Sensing%20of%20ECG%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Craven,%20Darren&rft.date=2017-05&rft.volume=21&rft.issue=3&rft.spage=645&rft.epage=654&rft.pages=645-654&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2016.2531182&rft_dat=%3Cproquest_cross%3E1897024313%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-efd4c3bb136629ea421e2af5b18a3d0fcae8689592e7a0659c1398d6e70856913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1897024313&rft_id=info:pmid/26890933&rft_ieee_id=7409938&rfr_iscdi=true