Loading…
How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention
Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generate heatmaps reflecting lesion regions precisely. We...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2020-12, Vol.24 (12), p.3351-3361 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3 |
container_end_page | 3361 |
container_issue | 12 |
container_start_page | 3351 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 24 |
creator | Meng, Qier Hashimoto, Yohei Satoh, Shin'ichi |
description | Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generate heatmaps reflecting lesion regions precisely. We generated initial heatmaps by using a gradient-based classification activation map (Grad-CAM). We assume that these Grad-CAM heatmaps correctly reveal the lesion regions; then we apply the attention mining technique to these heatmaps to obtain integrated heatmaps. Moreover, we assume that these Grad-CAM heatmaps incorrectly reveal the lesion regions and design a dissimilarity loss to increase their discrepancy with the Grad-CAM heatmaps. In this study, we found that having professional ophthalmologists select 30% of the heatmaps covering the lesion regions led to better results, because this step integrates (prior) clinical knowledge into the system. Furthermore, we design a knowledge preservation loss that minimizes the discrepancy between heatmaps generated from the updated CNN model and the selected heatmaps. Experiments using fundus images revealed that our method improved classification accuracy and generated attention regions closer to the ground truth lesion regions in comparison with existing methods. |
doi_str_mv | 10.1109/JBHI.2020.3011805 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2020_3011805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9147001</ieee_id><sourcerecordid>2468750858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3</originalsourceid><addsrcrecordid>eNpdkV1LHDEUhkOxVFF_QCmUgDe92TUf85H0rrtqd8sWoSi9HDLJGTcyM1mTTP34Ff7kZthVxEBISJ7zhpMHoc-UTCkl8vTXbLGcMsLIlBNKBck_oANGCzFhjIi9lz2V2T46DuGWpCHSkSw-oX3OypzIkhyg54W7x9Hh84folY74t_OAl33jfKeidT3-a-MaryAEPBu8gf47vhh6MwS87NQN4HmrQrCN1Vta9Qb_gWh71eIzG0AFwCunVWuf3sRdbtZxrdrOte7Ghpjei-D_QT8SR-hjo9oAx7v1EF1fnF_NF5PV5c_l_Mdqonkm4yQrGdOFHBuhNTDBjSg5KZQ0RqYJus6LvAZSUy4MzzNtWA01SRivc2g0P0Tftrkb7-4GCLHqbNDQtqoHN4SKZSmuyBijCT15h966wacWR6oQ6StFLhJFt5T2LgQPTbXxtlP-saKkGo1Vo7FqNFbtjKWar7vkoe7AvFa8-EnAly1gAeD1WtKsJITy_4Afm0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468750858</pqid></control><display><type>article</type><title>How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Meng, Qier ; Hashimoto, Yohei ; Satoh, Shin'ichi</creator><creatorcontrib>Meng, Qier ; Hashimoto, Yohei ; Satoh, Shin'ichi</creatorcontrib><description>Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generate heatmaps reflecting lesion regions precisely. We generated initial heatmaps by using a gradient-based classification activation map (Grad-CAM). We assume that these Grad-CAM heatmaps correctly reveal the lesion regions; then we apply the attention mining technique to these heatmaps to obtain integrated heatmaps. Moreover, we assume that these Grad-CAM heatmaps incorrectly reveal the lesion regions and design a dissimilarity loss to increase their discrepancy with the Grad-CAM heatmaps. In this study, we found that having professional ophthalmologists select 30% of the heatmaps covering the lesion regions led to better results, because this step integrates (prior) clinical knowledge into the system. Furthermore, we design a knowledge preservation loss that minimizes the discrepancy between heatmaps generated from the updated CNN model and the selected heatmaps. Experiments using fundus images revealed that our method improved classification accuracy and generated attention regions closer to the ground truth lesion regions in comparison with existing methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.3011805</identifier><identifier>PMID: 32750970</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; attention mining ; Bioinformatics ; Blindness ; Classification ; Diseases ; dissimilarity ; Fundus Oculi ; grad-CAM ; Ground truth ; Heating systems ; Humans ; Image classification ; Image Interpretation, Computer-Assisted - methods ; Information processing ; Knowledge ; knowledge preservation ; Lesion localization ; Lesions ; Localization ; Neural networks ; Neural Networks, Computer ; Ophthalmologists ; Retina ; Retina - diagnostic imaging ; Retinal Diseases - diagnostic imaging ; Visualization</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-12, Vol.24 (12), p.3351-3361</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3</citedby><cites>FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3</cites><orcidid>0000-0002-0697-942X ; 0000-0001-6995-6447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9147001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32750970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Qier</creatorcontrib><creatorcontrib>Hashimoto, Yohei</creatorcontrib><creatorcontrib>Satoh, Shin'ichi</creatorcontrib><title>How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generate heatmaps reflecting lesion regions precisely. We generated initial heatmaps by using a gradient-based classification activation map (Grad-CAM). We assume that these Grad-CAM heatmaps correctly reveal the lesion regions; then we apply the attention mining technique to these heatmaps to obtain integrated heatmaps. Moreover, we assume that these Grad-CAM heatmaps incorrectly reveal the lesion regions and design a dissimilarity loss to increase their discrepancy with the Grad-CAM heatmaps. In this study, we found that having professional ophthalmologists select 30% of the heatmaps covering the lesion regions led to better results, because this step integrates (prior) clinical knowledge into the system. Furthermore, we design a knowledge preservation loss that minimizes the discrepancy between heatmaps generated from the updated CNN model and the selected heatmaps. Experiments using fundus images revealed that our method improved classification accuracy and generated attention regions closer to the ground truth lesion regions in comparison with existing methods.</description><subject>Artificial neural networks</subject><subject>attention mining</subject><subject>Bioinformatics</subject><subject>Blindness</subject><subject>Classification</subject><subject>Diseases</subject><subject>dissimilarity</subject><subject>Fundus Oculi</subject><subject>grad-CAM</subject><subject>Ground truth</subject><subject>Heating systems</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information processing</subject><subject>Knowledge</subject><subject>knowledge preservation</subject><subject>Lesion localization</subject><subject>Lesions</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Ophthalmologists</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Visualization</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkV1LHDEUhkOxVFF_QCmUgDe92TUf85H0rrtqd8sWoSi9HDLJGTcyM1mTTP34Ff7kZthVxEBISJ7zhpMHoc-UTCkl8vTXbLGcMsLIlBNKBck_oANGCzFhjIi9lz2V2T46DuGWpCHSkSw-oX3OypzIkhyg54W7x9Hh84folY74t_OAl33jfKeidT3-a-MaryAEPBu8gf47vhh6MwS87NQN4HmrQrCN1Vta9Qb_gWh71eIzG0AFwCunVWuf3sRdbtZxrdrOte7Ghpjei-D_QT8SR-hjo9oAx7v1EF1fnF_NF5PV5c_l_Mdqonkm4yQrGdOFHBuhNTDBjSg5KZQ0RqYJus6LvAZSUy4MzzNtWA01SRivc2g0P0Tftrkb7-4GCLHqbNDQtqoHN4SKZSmuyBijCT15h966wacWR6oQ6StFLhJFt5T2LgQPTbXxtlP-saKkGo1Vo7FqNFbtjKWar7vkoe7AvFa8-EnAly1gAeD1WtKsJITy_4Afm0M</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Meng, Qier</creator><creator>Hashimoto, Yohei</creator><creator>Satoh, Shin'ichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0697-942X</orcidid><orcidid>https://orcid.org/0000-0001-6995-6447</orcidid></search><sort><creationdate>20201201</creationdate><title>How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention</title><author>Meng, Qier ; Hashimoto, Yohei ; Satoh, Shin'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>attention mining</topic><topic>Bioinformatics</topic><topic>Blindness</topic><topic>Classification</topic><topic>Diseases</topic><topic>dissimilarity</topic><topic>Fundus Oculi</topic><topic>grad-CAM</topic><topic>Ground truth</topic><topic>Heating systems</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information processing</topic><topic>Knowledge</topic><topic>knowledge preservation</topic><topic>Lesion localization</topic><topic>Lesions</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Ophthalmologists</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Qier</creatorcontrib><creatorcontrib>Hashimoto, Yohei</creatorcontrib><creatorcontrib>Satoh, Shin'ichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Qier</au><au>Hashimoto, Yohei</au><au>Satoh, Shin'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>24</volume><issue>12</issue><spage>3351</spage><epage>3361</epage><pages>3351-3361</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generate heatmaps reflecting lesion regions precisely. We generated initial heatmaps by using a gradient-based classification activation map (Grad-CAM). We assume that these Grad-CAM heatmaps correctly reveal the lesion regions; then we apply the attention mining technique to these heatmaps to obtain integrated heatmaps. Moreover, we assume that these Grad-CAM heatmaps incorrectly reveal the lesion regions and design a dissimilarity loss to increase their discrepancy with the Grad-CAM heatmaps. In this study, we found that having professional ophthalmologists select 30% of the heatmaps covering the lesion regions led to better results, because this step integrates (prior) clinical knowledge into the system. Furthermore, we design a knowledge preservation loss that minimizes the discrepancy between heatmaps generated from the updated CNN model and the selected heatmaps. Experiments using fundus images revealed that our method improved classification accuracy and generated attention regions closer to the ground truth lesion regions in comparison with existing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32750970</pmid><doi>10.1109/JBHI.2020.3011805</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0697-942X</orcidid><orcidid>https://orcid.org/0000-0001-6995-6447</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2020-12, Vol.24 (12), p.3351-3361 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JBHI_2020_3011805 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks attention mining Bioinformatics Blindness Classification Diseases dissimilarity Fundus Oculi grad-CAM Ground truth Heating systems Humans Image classification Image Interpretation, Computer-Assisted - methods Information processing Knowledge knowledge preservation Lesion localization Lesions Localization Neural networks Neural Networks, Computer Ophthalmologists Retina Retina - diagnostic imaging Retinal Diseases - diagnostic imaging Visualization |
title | How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Extract%20More%20Information%20With%20Less%20Burden:%20Fundus%20Image%20Classification%20and%20Retinal%20Disease%20Localization%20With%20Ophthalmologist%20Intervention&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Meng,%20Qier&rft.date=2020-12-01&rft.volume=24&rft.issue=12&rft.spage=3351&rft.epage=3361&rft.pages=3351-3361&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.3011805&rft_dat=%3Cproquest_cross%3E2468750858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4722c6932751be283d87306a9dd99ddecb565be0b138d354cd2beb03d83b5efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468750858&rft_id=info:pmid/32750970&rft_ieee_id=9147001&rfr_iscdi=true |