Loading…

Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays

Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model'...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2022-11, Vol.26 (11), p.5518-5528
Main Authors: Kamal, Uday, Zunaed, Mohammad, Nizam, Nusrat Binta, Hasan, Taufiq
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333
cites cdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333
container_end_page 5528
container_issue 11
container_start_page 5518
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Kamal, Uday
Zunaed, Mohammad
Nizam, Nusrat Binta
Hasan, Taufiq
description Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.
doi_str_mv 10.1109/JBHI.2022.3199594
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2022_3199594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9860074</ieee_id><sourcerecordid>2735379722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEAjT2AxCXSFy4dCRO2iTcxvgYCA0JDWm3KmtTEegaSFrQ_j0pGxzwxZb1vLbsF6FjSkaUEnV-fzm9GwEBGDGqVKr4DjoEmskEgMjd35oqfoCGIbySGDK2VLaPDliqRCa5OERu3OjWrdbJYmbaCzxu8LaBx1_aGzxxzaeru9a6Rtd4Zjr_k9ov599w5TyevzivC1vgKxuMDlFR6xBsZQvdi7Bt8OTFhBYvkie9Dkdor9J1MMNtHqDnm-v5ZJo8PN7eTcYPScEUtAlfZsSYNCtLkFpwUsqSAi8ElCzjpYYKgHHBwciUqgy4SrWkVaFBymVlGGMDdLaZ--7dRxf35ysbClPXujGuCzkIwnh8B6iInv5DX13n47k9xVImlIjbBohuqMK7ELyp8ndvV9qvc0ry3pC8NyTvDcm3hkTNyUZjjTF_vJIZIYKzbwJ2g5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735379722</pqid></control><display><type>article</type><title>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</title><source>IEEE Xplore (Online service)</source><creator>Kamal, Uday ; Zunaed, Mohammad ; Nizam, Nusrat Binta ; Hasan, Taufiq</creator><creatorcontrib>Kamal, Uday ; Zunaed, Mohammad ; Nizam, Nusrat Binta ; Hasan, Taufiq</creatorcontrib><description>Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3199594</identifier><identifier>PMID: 35976847</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>anatomical segmenta- tion ; Anatomy ; Anatomy-aware attention ; Annotations ; Artificial neural networks ; Biomedical imaging ; Chest ; chest radio- graphy ; Classification ; Computer networks ; Convolutional neural networks ; Datasets ; Deep learning ; Disease detection ; Diseases ; Image segmentation ; Lesions ; Lung ; Machine learning ; Neural networks ; semi-supervised learning ; Teaching methods ; thoracic disease classification ; Thorax ; X-rays</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-11, Vol.26 (11), p.5518-5528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</citedby><cites>FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</cites><orcidid>0000-0001-5987-4800 ; 0000-0002-5161-4139 ; 0000-0002-6142-3344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9860074$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kamal, Uday</creatorcontrib><creatorcontrib>Zunaed, Mohammad</creatorcontrib><creatorcontrib>Nizam, Nusrat Binta</creatorcontrib><creatorcontrib>Hasan, Taufiq</creatorcontrib><title>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.</description><subject>anatomical segmenta- tion</subject><subject>Anatomy</subject><subject>Anatomy-aware attention</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Chest</subject><subject>chest radio- graphy</subject><subject>Classification</subject><subject>Computer networks</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease detection</subject><subject>Diseases</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Lung</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>semi-supervised learning</subject><subject>Teaching methods</subject><subject>thoracic disease classification</subject><subject>Thorax</subject><subject>X-rays</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhiMEAjT2AxCXSFy4dCRO2iTcxvgYCA0JDWm3KmtTEegaSFrQ_j0pGxzwxZb1vLbsF6FjSkaUEnV-fzm9GwEBGDGqVKr4DjoEmskEgMjd35oqfoCGIbySGDK2VLaPDliqRCa5OERu3OjWrdbJYmbaCzxu8LaBx1_aGzxxzaeru9a6Rtd4Zjr_k9ov599w5TyevzivC1vgKxuMDlFR6xBsZQvdi7Bt8OTFhBYvkie9Dkdor9J1MMNtHqDnm-v5ZJo8PN7eTcYPScEUtAlfZsSYNCtLkFpwUsqSAi8ElCzjpYYKgHHBwciUqgy4SrWkVaFBymVlGGMDdLaZ--7dRxf35ysbClPXujGuCzkIwnh8B6iInv5DX13n47k9xVImlIjbBohuqMK7ELyp8ndvV9qvc0ry3pC8NyTvDcm3hkTNyUZjjTF_vJIZIYKzbwJ2g5Y</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kamal, Uday</creator><creator>Zunaed, Mohammad</creator><creator>Nizam, Nusrat Binta</creator><creator>Hasan, Taufiq</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5987-4800</orcidid><orcidid>https://orcid.org/0000-0002-5161-4139</orcidid><orcidid>https://orcid.org/0000-0002-6142-3344</orcidid></search><sort><creationdate>20221101</creationdate><title>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</title><author>Kamal, Uday ; Zunaed, Mohammad ; Nizam, Nusrat Binta ; Hasan, Taufiq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anatomical segmenta- tion</topic><topic>Anatomy</topic><topic>Anatomy-aware attention</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Chest</topic><topic>chest radio- graphy</topic><topic>Classification</topic><topic>Computer networks</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease detection</topic><topic>Diseases</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Lung</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>semi-supervised learning</topic><topic>Teaching methods</topic><topic>thoracic disease classification</topic><topic>Thorax</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamal, Uday</creatorcontrib><creatorcontrib>Zunaed, Mohammad</creatorcontrib><creatorcontrib>Nizam, Nusrat Binta</creatorcontrib><creatorcontrib>Hasan, Taufiq</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamal, Uday</au><au>Zunaed, Mohammad</au><au>Nizam, Nusrat Binta</au><au>Hasan, Taufiq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>26</volume><issue>11</issue><spage>5518</spage><epage>5528</epage><pages>5518-5528</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>35976847</pmid><doi>10.1109/JBHI.2022.3199594</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5987-4800</orcidid><orcidid>https://orcid.org/0000-0002-5161-4139</orcidid><orcidid>https://orcid.org/0000-0002-6142-3344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-11, Vol.26 (11), p.5518-5528
issn 2168-2194
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_JBHI_2022_3199594
source IEEE Xplore (Online service)
subjects anatomical segmenta- tion
Anatomy
Anatomy-aware attention
Annotations
Artificial neural networks
Biomedical imaging
Chest
chest radio- graphy
Classification
Computer networks
Convolutional neural networks
Datasets
Deep learning
Disease detection
Diseases
Image segmentation
Lesions
Lung
Machine learning
Neural networks
semi-supervised learning
Teaching methods
thoracic disease classification
Thorax
X-rays
title Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy-XNet:%20An%20Anatomy%20Aware%20Convolutional%20Neural%20Network%20for%20Thoracic%20Disease%20Classification%20in%20Chest%20X-Rays&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kamal,%20Uday&rft.date=2022-11-01&rft.volume=26&rft.issue=11&rft.spage=5518&rft.epage=5528&rft.pages=5518-5528&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3199594&rft_dat=%3Cproquest_cross%3E2735379722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735379722&rft_id=info:pmid/35976847&rft_ieee_id=9860074&rfr_iscdi=true