Loading…
Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays
Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model'...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2022-11, Vol.26 (11), p.5518-5528 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333 |
container_end_page | 5528 |
container_issue | 11 |
container_start_page | 5518 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Kamal, Uday Zunaed, Mohammad Nizam, Nusrat Binta Hasan, Taufiq |
description | Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework. |
doi_str_mv | 10.1109/JBHI.2022.3199594 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JBHI_2022_3199594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9860074</ieee_id><sourcerecordid>2735379722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEAjT2AxCXSFy4dCRO2iTcxvgYCA0JDWm3KmtTEegaSFrQ_j0pGxzwxZb1vLbsF6FjSkaUEnV-fzm9GwEBGDGqVKr4DjoEmskEgMjd35oqfoCGIbySGDK2VLaPDliqRCa5OERu3OjWrdbJYmbaCzxu8LaBx1_aGzxxzaeru9a6Rtd4Zjr_k9ov599w5TyevzivC1vgKxuMDlFR6xBsZQvdi7Bt8OTFhBYvkie9Dkdor9J1MMNtHqDnm-v5ZJo8PN7eTcYPScEUtAlfZsSYNCtLkFpwUsqSAi8ElCzjpYYKgHHBwciUqgy4SrWkVaFBymVlGGMDdLaZ--7dRxf35ysbClPXujGuCzkIwnh8B6iInv5DX13n47k9xVImlIjbBohuqMK7ELyp8ndvV9qvc0ry3pC8NyTvDcm3hkTNyUZjjTF_vJIZIYKzbwJ2g5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735379722</pqid></control><display><type>article</type><title>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</title><source>IEEE Xplore (Online service)</source><creator>Kamal, Uday ; Zunaed, Mohammad ; Nizam, Nusrat Binta ; Hasan, Taufiq</creator><creatorcontrib>Kamal, Uday ; Zunaed, Mohammad ; Nizam, Nusrat Binta ; Hasan, Taufiq</creatorcontrib><description>Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3199594</identifier><identifier>PMID: 35976847</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>anatomical segmenta- tion ; Anatomy ; Anatomy-aware attention ; Annotations ; Artificial neural networks ; Biomedical imaging ; Chest ; chest radio- graphy ; Classification ; Computer networks ; Convolutional neural networks ; Datasets ; Deep learning ; Disease detection ; Diseases ; Image segmentation ; Lesions ; Lung ; Machine learning ; Neural networks ; semi-supervised learning ; Teaching methods ; thoracic disease classification ; Thorax ; X-rays</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-11, Vol.26 (11), p.5518-5528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</citedby><cites>FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</cites><orcidid>0000-0001-5987-4800 ; 0000-0002-5161-4139 ; 0000-0002-6142-3344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9860074$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kamal, Uday</creatorcontrib><creatorcontrib>Zunaed, Mohammad</creatorcontrib><creatorcontrib>Nizam, Nusrat Binta</creatorcontrib><creatorcontrib>Hasan, Taufiq</creatorcontrib><title>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.</description><subject>anatomical segmenta- tion</subject><subject>Anatomy</subject><subject>Anatomy-aware attention</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Chest</subject><subject>chest radio- graphy</subject><subject>Classification</subject><subject>Computer networks</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease detection</subject><subject>Diseases</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Lung</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>semi-supervised learning</subject><subject>Teaching methods</subject><subject>thoracic disease classification</subject><subject>Thorax</subject><subject>X-rays</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhiMEAjT2AxCXSFy4dCRO2iTcxvgYCA0JDWm3KmtTEegaSFrQ_j0pGxzwxZb1vLbsF6FjSkaUEnV-fzm9GwEBGDGqVKr4DjoEmskEgMjd35oqfoCGIbySGDK2VLaPDliqRCa5OERu3OjWrdbJYmbaCzxu8LaBx1_aGzxxzaeru9a6Rtd4Zjr_k9ov599w5TyevzivC1vgKxuMDlFR6xBsZQvdi7Bt8OTFhBYvkie9Dkdor9J1MMNtHqDnm-v5ZJo8PN7eTcYPScEUtAlfZsSYNCtLkFpwUsqSAi8ElCzjpYYKgHHBwciUqgy4SrWkVaFBymVlGGMDdLaZ--7dRxf35ysbClPXujGuCzkIwnh8B6iInv5DX13n47k9xVImlIjbBohuqMK7ELyp8ndvV9qvc0ry3pC8NyTvDcm3hkTNyUZjjTF_vJIZIYKzbwJ2g5Y</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kamal, Uday</creator><creator>Zunaed, Mohammad</creator><creator>Nizam, Nusrat Binta</creator><creator>Hasan, Taufiq</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5987-4800</orcidid><orcidid>https://orcid.org/0000-0002-5161-4139</orcidid><orcidid>https://orcid.org/0000-0002-6142-3344</orcidid></search><sort><creationdate>20221101</creationdate><title>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</title><author>Kamal, Uday ; Zunaed, Mohammad ; Nizam, Nusrat Binta ; Hasan, Taufiq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anatomical segmenta- tion</topic><topic>Anatomy</topic><topic>Anatomy-aware attention</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Chest</topic><topic>chest radio- graphy</topic><topic>Classification</topic><topic>Computer networks</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease detection</topic><topic>Diseases</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Lung</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>semi-supervised learning</topic><topic>Teaching methods</topic><topic>thoracic disease classification</topic><topic>Thorax</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamal, Uday</creatorcontrib><creatorcontrib>Zunaed, Mohammad</creatorcontrib><creatorcontrib>Nizam, Nusrat Binta</creatorcontrib><creatorcontrib>Hasan, Taufiq</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamal, Uday</au><au>Zunaed, Mohammad</au><au>Nizam, Nusrat Binta</au><au>Hasan, Taufiq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>26</volume><issue>11</issue><spage>5518</spage><epage>5528</epage><pages>5518-5528</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Thoracic disease detection from chest radiographs using deep learning methods has been an active area of research in the last decade. Most previous methods attempt to focus on the diseased organs of the image by identifying spatial regions responsible for significant contributions to the model's prediction. In contrast, expert radiologists first locate the prominent anatomical structures before determining if those regions are anomalous. Therefore, integrating anatomical knowledge within deep learning models could bring substantial improvement in automatic disease classification. Motivated by this, we propose Anatomy-XNet, an anatomy-aware attention-based thoracic disease classification network that prioritizes the spatial features guided by the pre-identified anatomy regions. We adopt a semi-supervised learning method by utilizing available small-scale organ-level annotations to locate the anatomy regions in large-scale datasets where the organ-level annotations are absent. The proposed Anatomy-XNet uses the pre-trained DenseNet-121 as the backbone network with two corresponding structured modules, the Anatomy Aware Attention (A 3 ) and Probabilistic Weighted Average Pooling, in a cohesive framework for anatomical attention learning. We experimentally show that our proposed method sets a new state-of-the-art benchmark by achieving an AUC score of 85.78%, 92.07%, and, 84.04% on three publicly available large-scale CXR datasets-NIH, Stanford CheXpert, and MIMIC-CXR, respectively. This not only proves the efficacy of utilizing the anatomy segmentation knowledge to improve the thoracic disease classification but also demonstrates the generalizability of the proposed framework.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>35976847</pmid><doi>10.1109/JBHI.2022.3199594</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5987-4800</orcidid><orcidid>https://orcid.org/0000-0002-5161-4139</orcidid><orcidid>https://orcid.org/0000-0002-6142-3344</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-11, Vol.26 (11), p.5518-5528 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JBHI_2022_3199594 |
source | IEEE Xplore (Online service) |
subjects | anatomical segmenta- tion Anatomy Anatomy-aware attention Annotations Artificial neural networks Biomedical imaging Chest chest radio- graphy Classification Computer networks Convolutional neural networks Datasets Deep learning Disease detection Diseases Image segmentation Lesions Lung Machine learning Neural networks semi-supervised learning Teaching methods thoracic disease classification Thorax X-rays |
title | Anatomy-XNet: An Anatomy Aware Convolutional Neural Network for Thoracic Disease Classification in Chest X-Rays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy-XNet:%20An%20Anatomy%20Aware%20Convolutional%20Neural%20Network%20for%20Thoracic%20Disease%20Classification%20in%20Chest%20X-Rays&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kamal,%20Uday&rft.date=2022-11-01&rft.volume=26&rft.issue=11&rft.spage=5518&rft.epage=5528&rft.pages=5518-5528&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3199594&rft_dat=%3Cproquest_cross%3E2735379722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-4b60ee56dd28a740d8d124c72d364da2f2234742e851962495a81fca288bfe333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735379722&rft_id=info:pmid/35976847&rft_ieee_id=9860074&rfr_iscdi=true |