Loading…
Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders
In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where...
Saved in:
Published in: | IEEE journal of emerging and selected topics in power electronics 2020-06, Vol.8 (2), p.1097-1107 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053 |
---|---|
cites | cdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053 |
container_end_page | 1107 |
container_issue | 2 |
container_start_page | 1097 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 8 |
creator | Du, Yuhua Lu, Xiaonan Tu, Hao Wang, Jianhui Lukic, Srdjan |
description | In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed. |
doi_str_mv | 10.1109/JESTPE.2019.2936741 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JESTPE_2019_2936741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8808871</ieee_id><sourcerecordid>2397908520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</originalsourceid><addsrcrecordid>eNo9kNtqAjEQhkNpoWJ9Am8CvV6b4ya5LB5ai8WCSi_T7G7WRjRrk7Vgn74RxbmZgfn_OXwA9DEaYIzU09t4sfwYDwjCakAUzQXDN6BDcC6zXEh-e62FuAe9GDcohSRcCdkBX6OjNztXwndXhmYdXBXhp2u_4cJu62we1sa7P1vBl9TJJk3YOb-GU_9rQ2tDhM7DlS_M1vgyiUYutsEVh9Y1Hk6srZLkAdzVZhtt75K7YDUZL4ev2Wz-Mh0-z7KSMtJmBvFCodwWilFeVEQIaeq6NEwxRmlFuMSUiVoKjLmiZVVKJoksqOQFJxJx2gWP57n70PwcbGz1pjkEn1ZqQpVQSHKCkoqeVenZGIOt9T64nQlHjZE-0dRnmvpEU19oJlf_7HLW2qtDSiTTPfQfdaRwUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397908520</pqid></control><display><type>article</type><title>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Du, Yuhua ; Lu, Xiaonan ; Tu, Hao ; Wang, Jianhui ; Lukic, Srdjan</creator><creatorcontrib>Du, Yuhua ; Lu, Xiaonan ; Tu, Hao ; Wang, Jianhui ; Lukic, Srdjan</creatorcontrib><description>In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2019.2936741</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control stability ; Control systems ; Control systems design ; Distributed control ; Distributed generation ; dynamic microgrids (MGs) ; Electric potential ; Feeders ; Hardware ; Inverters ; Microgrids ; network reconfiguration ; Network topology ; Reconfiguration ; secondary control ; Stability analysis ; Strategy ; Topology ; Transient analysis ; Unbalance ; unbalanced system ; Voltage ; Voltage control</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2020-06, Vol.8 (2), p.1097-1107</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</citedby><cites>FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</cites><orcidid>0000-0002-0920-1939 ; 0000-0003-1545-4200 ; 0000-0001-9265-560X ; 0000-0002-5115-7521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8808871$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Du, Yuhua</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Tu, Hao</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Lukic, Srdjan</creatorcontrib><title>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.</description><subject>Control stability</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Distributed control</subject><subject>Distributed generation</subject><subject>dynamic microgrids (MGs)</subject><subject>Electric potential</subject><subject>Feeders</subject><subject>Hardware</subject><subject>Inverters</subject><subject>Microgrids</subject><subject>network reconfiguration</subject><subject>Network topology</subject><subject>Reconfiguration</subject><subject>secondary control</subject><subject>Stability analysis</subject><subject>Strategy</subject><subject>Topology</subject><subject>Transient analysis</subject><subject>Unbalance</subject><subject>unbalanced system</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNtqAjEQhkNpoWJ9Am8CvV6b4ya5LB5ai8WCSi_T7G7WRjRrk7Vgn74RxbmZgfn_OXwA9DEaYIzU09t4sfwYDwjCakAUzQXDN6BDcC6zXEh-e62FuAe9GDcohSRcCdkBX6OjNztXwndXhmYdXBXhp2u_4cJu62we1sa7P1vBl9TJJk3YOb-GU_9rQ2tDhM7DlS_M1vgyiUYutsEVh9Y1Hk6srZLkAdzVZhtt75K7YDUZL4ev2Wz-Mh0-z7KSMtJmBvFCodwWilFeVEQIaeq6NEwxRmlFuMSUiVoKjLmiZVVKJoksqOQFJxJx2gWP57n70PwcbGz1pjkEn1ZqQpVQSHKCkoqeVenZGIOt9T64nQlHjZE-0dRnmvpEU19oJlf_7HLW2qtDSiTTPfQfdaRwUg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Du, Yuhua</creator><creator>Lu, Xiaonan</creator><creator>Tu, Hao</creator><creator>Wang, Jianhui</creator><creator>Lukic, Srdjan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-4200</orcidid><orcidid>https://orcid.org/0000-0001-9265-560X</orcidid><orcidid>https://orcid.org/0000-0002-5115-7521</orcidid></search><sort><creationdate>20200601</creationdate><title>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</title><author>Du, Yuhua ; Lu, Xiaonan ; Tu, Hao ; Wang, Jianhui ; Lukic, Srdjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control stability</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Distributed control</topic><topic>Distributed generation</topic><topic>dynamic microgrids (MGs)</topic><topic>Electric potential</topic><topic>Feeders</topic><topic>Hardware</topic><topic>Inverters</topic><topic>Microgrids</topic><topic>network reconfiguration</topic><topic>Network topology</topic><topic>Reconfiguration</topic><topic>secondary control</topic><topic>Stability analysis</topic><topic>Strategy</topic><topic>Topology</topic><topic>Transient analysis</topic><topic>Unbalance</topic><topic>unbalanced system</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yuhua</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Tu, Hao</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Lukic, Srdjan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yuhua</au><au>Lu, Xiaonan</au><au>Tu, Hao</au><au>Wang, Jianhui</au><au>Lukic, Srdjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>8</volume><issue>2</issue><spage>1097</spage><epage>1107</epage><pages>1097-1107</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2019.2936741</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-4200</orcidid><orcidid>https://orcid.org/0000-0001-9265-560X</orcidid><orcidid>https://orcid.org/0000-0002-5115-7521</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2020-06, Vol.8 (2), p.1097-1107 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JESTPE_2019_2936741 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Control stability Control systems Control systems design Distributed control Distributed generation dynamic microgrids (MGs) Electric potential Feeders Hardware Inverters Microgrids network reconfiguration Network topology Reconfiguration secondary control Stability analysis Strategy Topology Transient analysis Unbalance unbalanced system Voltage Voltage control |
title | Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Microgrids%20With%20Self-Organized%20Grid-Forming%20Inverters%20in%20Unbalanced%20Distribution%20Feeders&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Du,%20Yuhua&rft.date=2020-06-01&rft.volume=8&rft.issue=2&rft.spage=1097&rft.epage=1107&rft.pages=1097-1107&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2019.2936741&rft_dat=%3Cproquest_cross%3E2397908520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397908520&rft_id=info:pmid/&rft_ieee_id=8808871&rfr_iscdi=true |