Loading…

Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders

In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of emerging and selected topics in power electronics 2020-06, Vol.8 (2), p.1097-1107
Main Authors: Du, Yuhua, Lu, Xiaonan, Tu, Hao, Wang, Jianhui, Lukic, Srdjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053
cites cdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053
container_end_page 1107
container_issue 2
container_start_page 1097
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 8
creator Du, Yuhua
Lu, Xiaonan
Tu, Hao
Wang, Jianhui
Lukic, Srdjan
description In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.
doi_str_mv 10.1109/JESTPE.2019.2936741
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JESTPE_2019_2936741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8808871</ieee_id><sourcerecordid>2397908520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</originalsourceid><addsrcrecordid>eNo9kNtqAjEQhkNpoWJ9Am8CvV6b4ya5LB5ai8WCSi_T7G7WRjRrk7Vgn74RxbmZgfn_OXwA9DEaYIzU09t4sfwYDwjCakAUzQXDN6BDcC6zXEh-e62FuAe9GDcohSRcCdkBX6OjNztXwndXhmYdXBXhp2u_4cJu62we1sa7P1vBl9TJJk3YOb-GU_9rQ2tDhM7DlS_M1vgyiUYutsEVh9Y1Hk6srZLkAdzVZhtt75K7YDUZL4ev2Wz-Mh0-z7KSMtJmBvFCodwWilFeVEQIaeq6NEwxRmlFuMSUiVoKjLmiZVVKJoksqOQFJxJx2gWP57n70PwcbGz1pjkEn1ZqQpVQSHKCkoqeVenZGIOt9T64nQlHjZE-0dRnmvpEU19oJlf_7HLW2qtDSiTTPfQfdaRwUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397908520</pqid></control><display><type>article</type><title>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Du, Yuhua ; Lu, Xiaonan ; Tu, Hao ; Wang, Jianhui ; Lukic, Srdjan</creator><creatorcontrib>Du, Yuhua ; Lu, Xiaonan ; Tu, Hao ; Wang, Jianhui ; Lukic, Srdjan</creatorcontrib><description>In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2019.2936741</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Control stability ; Control systems ; Control systems design ; Distributed control ; Distributed generation ; dynamic microgrids (MGs) ; Electric potential ; Feeders ; Hardware ; Inverters ; Microgrids ; network reconfiguration ; Network topology ; Reconfiguration ; secondary control ; Stability analysis ; Strategy ; Topology ; Transient analysis ; Unbalance ; unbalanced system ; Voltage ; Voltage control</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2020-06, Vol.8 (2), p.1097-1107</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</citedby><cites>FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</cites><orcidid>0000-0002-0920-1939 ; 0000-0003-1545-4200 ; 0000-0001-9265-560X ; 0000-0002-5115-7521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8808871$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Du, Yuhua</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Tu, Hao</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Lukic, Srdjan</creatorcontrib><title>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.</description><subject>Control stability</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Distributed control</subject><subject>Distributed generation</subject><subject>dynamic microgrids (MGs)</subject><subject>Electric potential</subject><subject>Feeders</subject><subject>Hardware</subject><subject>Inverters</subject><subject>Microgrids</subject><subject>network reconfiguration</subject><subject>Network topology</subject><subject>Reconfiguration</subject><subject>secondary control</subject><subject>Stability analysis</subject><subject>Strategy</subject><subject>Topology</subject><subject>Transient analysis</subject><subject>Unbalance</subject><subject>unbalanced system</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNtqAjEQhkNpoWJ9Am8CvV6b4ya5LB5ai8WCSi_T7G7WRjRrk7Vgn74RxbmZgfn_OXwA9DEaYIzU09t4sfwYDwjCakAUzQXDN6BDcC6zXEh-e62FuAe9GDcohSRcCdkBX6OjNztXwndXhmYdXBXhp2u_4cJu62we1sa7P1vBl9TJJk3YOb-GU_9rQ2tDhM7DlS_M1vgyiUYutsEVh9Y1Hk6srZLkAdzVZhtt75K7YDUZL4ev2Wz-Mh0-z7KSMtJmBvFCodwWilFeVEQIaeq6NEwxRmlFuMSUiVoKjLmiZVVKJoksqOQFJxJx2gWP57n70PwcbGz1pjkEn1ZqQpVQSHKCkoqeVenZGIOt9T64nQlHjZE-0dRnmvpEU19oJlf_7HLW2qtDSiTTPfQfdaRwUg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Du, Yuhua</creator><creator>Lu, Xiaonan</creator><creator>Tu, Hao</creator><creator>Wang, Jianhui</creator><creator>Lukic, Srdjan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-4200</orcidid><orcidid>https://orcid.org/0000-0001-9265-560X</orcidid><orcidid>https://orcid.org/0000-0002-5115-7521</orcidid></search><sort><creationdate>20200601</creationdate><title>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</title><author>Du, Yuhua ; Lu, Xiaonan ; Tu, Hao ; Wang, Jianhui ; Lukic, Srdjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control stability</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Distributed control</topic><topic>Distributed generation</topic><topic>dynamic microgrids (MGs)</topic><topic>Electric potential</topic><topic>Feeders</topic><topic>Hardware</topic><topic>Inverters</topic><topic>Microgrids</topic><topic>network reconfiguration</topic><topic>Network topology</topic><topic>Reconfiguration</topic><topic>secondary control</topic><topic>Stability analysis</topic><topic>Strategy</topic><topic>Topology</topic><topic>Transient analysis</topic><topic>Unbalance</topic><topic>unbalanced system</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yuhua</creatorcontrib><creatorcontrib>Lu, Xiaonan</creatorcontrib><creatorcontrib>Tu, Hao</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Lukic, Srdjan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yuhua</au><au>Lu, Xiaonan</au><au>Tu, Hao</au><au>Wang, Jianhui</au><au>Lukic, Srdjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>8</volume><issue>2</issue><spage>1097</spage><epage>1107</epage><pages>1097-1107</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>In contrast to conventional static microgrids (MGs), MGs with dynamic and adjustable territories (i.e., dynamic MGs) are proposed and implemented in this article. Dynamic MGs are commonly dominated by grid-forming inverters and nested in unbalanced distribution feeders. Unlike balanced systems where only positive-sequence components exist, proper operation of unbalanced dynamic MGs presents additional challenges. A distributed secondary control strategy is developed in this article for distributed generators (DGs) interfaced with grid-forming inverters in unbalanced dynamic MGs by providing coordinated regulations on both positive- and negative-sequence system models. System frequency and voltage are under constant regulation, along with voltage unbalance (VU) management for multiple critical load buses (CLBs). The proposed control strategy enables seamless system transition during unbalanced dynamic MGs reconfiguration and guarantees proportional positive- and negative-sequence power-sharing among connected DGs with respect to system topology variation. Detailed controller designs are provided and stability analyses are derived. The proposed control strategy is fully implemented in hardware controllers and validated on a hardware-in-the-loop (HIL) MG testbed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2019.2936741</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0920-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-4200</orcidid><orcidid>https://orcid.org/0000-0001-9265-560X</orcidid><orcidid>https://orcid.org/0000-0002-5115-7521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2020-06, Vol.8 (2), p.1097-1107
issn 2168-6777
2168-6785
language eng
recordid cdi_crossref_primary_10_1109_JESTPE_2019_2936741
source IEEE Electronic Library (IEL) Journals
subjects Control stability
Control systems
Control systems design
Distributed control
Distributed generation
dynamic microgrids (MGs)
Electric potential
Feeders
Hardware
Inverters
Microgrids
network reconfiguration
Network topology
Reconfiguration
secondary control
Stability analysis
Strategy
Topology
Transient analysis
Unbalance
unbalanced system
Voltage
Voltage control
title Dynamic Microgrids With Self-Organized Grid-Forming Inverters in Unbalanced Distribution Feeders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Microgrids%20With%20Self-Organized%20Grid-Forming%20Inverters%20in%20Unbalanced%20Distribution%20Feeders&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Du,%20Yuhua&rft.date=2020-06-01&rft.volume=8&rft.issue=2&rft.spage=1097&rft.epage=1107&rft.pages=1097-1107&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2019.2936741&rft_dat=%3Cproquest_cross%3E2397908520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-a05b906eb9435bd2778affca494433d2581347f8711593cdc84828b385b528053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397908520&rft_id=info:pmid/&rft_ieee_id=8808871&rfr_iscdi=true