Loading…
Eliminating Repetitive Short-Circuit Degradation and Failure of 1.2-kV SiC Power MOSFETs
Silicon carbide (SiC) power MOSFETs are known to degrade and eventually fail under repetitive short-circuit (SC) stress. In this article, a new approach, named Baliga Short-Circuit Improvement Concept (BaSIC) depletion-mode MOSFET (DMM), is demonstrated to prevent the degradation and failure of 1.2-...
Saved in:
Published in: | IEEE journal of emerging and selected topics in power electronics 2021-12, Vol.9 (6), p.6773-6779 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicon carbide (SiC) power MOSFETs are known to degrade and eventually fail under repetitive short-circuit (SC) stress. In this article, a new approach, named Baliga Short-Circuit Improvement Concept (BaSIC) depletion-mode MOSFET (DMM), is demonstrated to prevent the degradation and failure of 1.2-kV SiC power MOSFETs under repetitive SC stress. The new concept utilizes a low-voltage, gate-source-shorted Si DMM connected to the source of the SiC MOSFET. It was experimentally verified that no degradation or failure of the SiC power MOSFET occurs after over 3000 SC events with the BaSIC(DMM) topology while the SiC power MOSFETs degraded and failed after 200 SC events without it. |
---|---|
ISSN: | 2168-6777 2168-6785 |
DOI: | 10.1109/JESTPE.2020.3045117 |