Loading…

Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment

This paper is concerned with path planning for unmanned aerial vehicles (UAVs) flying through low altitude urban environment. Although many different path planning algorithms have been proposed to find optimal or near-optimal collision-free paths for UAVs, most of them either do not consider dynamic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2018-04, Vol.5 (2), p.546-558
Main Authors: Yin, Chao, Xiao, Zhenyu, Cao, Xianbin, Xi, Xing, Yang, Peng, Wu, Dapeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3
cites cdi_FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3
container_end_page 558
container_issue 2
container_start_page 546
container_title IEEE internet of things journal
container_volume 5
creator Yin, Chao
Xiao, Zhenyu
Cao, Xianbin
Xi, Xing
Yang, Peng
Wu, Dapeng
description This paper is concerned with path planning for unmanned aerial vehicles (UAVs) flying through low altitude urban environment. Although many different path planning algorithms have been proposed to find optimal or near-optimal collision-free paths for UAVs, most of them either do not consider dynamic obstacle avoidance or do not incorporate multiple objectives. In this paper, we propose a multiobjective path planning (MOPP) framework to explore a suitable path for a UAV operating in a dynamic urban environment, where safety level is considered in the proposed framework to guarantee the safety of UAV in addition to travel time. To this aim, two types of safety index maps (SIMs) are developed first to capture static obstacles in the geography map and unexpected obstacles that are unavailable in the geography map. Then an MOPP method is proposed by jointly using offline and online search, where the offline search is based on the static SIM and helps shorten the travel time and avoid static obstacles, while the online search is based on the dynamic SIM of unexpected obstacles and helps bypass unexpected obstacles quickly. Extensive experimental results verify the effectiveness of the proposed framework under the dynamic urban environment.
doi_str_mv 10.1109/JIOT.2017.2717078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2717078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953494</ieee_id><sourcerecordid>2025107006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3</originalsourceid><addsrcrecordid>eNpNkM9PwjAYhhejiQT5A4yXJp6H_bG2qzeCqBjMSGRePDRtaaVkdNgNEv57hxjj6XsP7_N-yZMk1wgOEYLi7mVaLIYYIj7EHHHI87OkhwnmacYYPv-XL5NB06whhB1GkWC95KNwrvLBAhWWoAg_8c2qaFb3oBy9g9dd1fpar61p_d6CuWpXYF6pEHz4BGVY2ggeDkFtvAFl1CqASdj7WIeNDe1VcuFU1djB7-0n5eNkMX5OZ8XTdDyapYZQ0aYWUsM4djk0VuVGG8MN0SJzlDKYY-I4VWKptGCMcGcox1QT7TjBjCmjNeknt6fdbay_drZp5brexdC9lBhiiiCHkHUtdGqZWDdNtE5uo9-oeJAIyqNGedQojxrlr8aOuTkx3lr71-eCkkxk5BvseW3q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025107006</pqid></control><display><type>article</type><title>Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment</title><source>IEEE Xplore (Online service)</source><creator>Yin, Chao ; Xiao, Zhenyu ; Cao, Xianbin ; Xi, Xing ; Yang, Peng ; Wu, Dapeng</creator><creatorcontrib>Yin, Chao ; Xiao, Zhenyu ; Cao, Xianbin ; Xi, Xing ; Yang, Peng ; Wu, Dapeng</creatorcontrib><description>This paper is concerned with path planning for unmanned aerial vehicles (UAVs) flying through low altitude urban environment. Although many different path planning algorithms have been proposed to find optimal or near-optimal collision-free paths for UAVs, most of them either do not consider dynamic obstacle avoidance or do not incorporate multiple objectives. In this paper, we propose a multiobjective path planning (MOPP) framework to explore a suitable path for a UAV operating in a dynamic urban environment, where safety level is considered in the proposed framework to guarantee the safety of UAV in addition to travel time. To this aim, two types of safety index maps (SIMs) are developed first to capture static obstacles in the geography map and unexpected obstacles that are unavailable in the geography map. Then an MOPP method is proposed by jointly using offline and online search, where the offline search is based on the static SIM and helps shorten the travel time and avoid static obstacles, while the online search is based on the dynamic SIM of unexpected obstacles and helps bypass unexpected obstacles quickly. Extensive experimental results verify the effectiveness of the proposed framework under the dynamic urban environment.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2717078</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Collision avoidance ; Collision dynamics ; Flight ; Geography ; Low altitude ; Low altitude urban environment ; Multiple objective analysis ; Obstacle avoidance ; offline and online search ; Path planning ; Product design ; Safety ; safety index map (SIM) ; Searching ; Sensors ; unmanned aerial vehicle (UAV) path planning ; Unmanned aerial vehicles ; Urban areas ; Vehicle dynamics</subject><ispartof>IEEE internet of things journal, 2018-04, Vol.5 (2), p.546-558</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3</citedby><cites>FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3</cites><orcidid>0000-0002-5042-7884 ; 0000-0002-4884-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Yin, Chao</creatorcontrib><creatorcontrib>Xiao, Zhenyu</creatorcontrib><creatorcontrib>Cao, Xianbin</creatorcontrib><creatorcontrib>Xi, Xing</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Wu, Dapeng</creatorcontrib><title>Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This paper is concerned with path planning for unmanned aerial vehicles (UAVs) flying through low altitude urban environment. Although many different path planning algorithms have been proposed to find optimal or near-optimal collision-free paths for UAVs, most of them either do not consider dynamic obstacle avoidance or do not incorporate multiple objectives. In this paper, we propose a multiobjective path planning (MOPP) framework to explore a suitable path for a UAV operating in a dynamic urban environment, where safety level is considered in the proposed framework to guarantee the safety of UAV in addition to travel time. To this aim, two types of safety index maps (SIMs) are developed first to capture static obstacles in the geography map and unexpected obstacles that are unavailable in the geography map. Then an MOPP method is proposed by jointly using offline and online search, where the offline search is based on the static SIM and helps shorten the travel time and avoid static obstacles, while the online search is based on the dynamic SIM of unexpected obstacles and helps bypass unexpected obstacles quickly. Extensive experimental results verify the effectiveness of the proposed framework under the dynamic urban environment.</description><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Flight</subject><subject>Geography</subject><subject>Low altitude</subject><subject>Low altitude urban environment</subject><subject>Multiple objective analysis</subject><subject>Obstacle avoidance</subject><subject>offline and online search</subject><subject>Path planning</subject><subject>Product design</subject><subject>Safety</subject><subject>safety index map (SIM)</subject><subject>Searching</subject><subject>Sensors</subject><subject>unmanned aerial vehicle (UAV) path planning</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><subject>Vehicle dynamics</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkM9PwjAYhhejiQT5A4yXJp6H_bG2qzeCqBjMSGRePDRtaaVkdNgNEv57hxjj6XsP7_N-yZMk1wgOEYLi7mVaLIYYIj7EHHHI87OkhwnmacYYPv-XL5NB06whhB1GkWC95KNwrvLBAhWWoAg_8c2qaFb3oBy9g9dd1fpar61p_d6CuWpXYF6pEHz4BGVY2ggeDkFtvAFl1CqASdj7WIeNDe1VcuFU1djB7-0n5eNkMX5OZ8XTdDyapYZQ0aYWUsM4djk0VuVGG8MN0SJzlDKYY-I4VWKptGCMcGcox1QT7TjBjCmjNeknt6fdbay_drZp5brexdC9lBhiiiCHkHUtdGqZWDdNtE5uo9-oeJAIyqNGedQojxrlr8aOuTkx3lr71-eCkkxk5BvseW3q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Yin, Chao</creator><creator>Xiao, Zhenyu</creator><creator>Cao, Xianbin</creator><creator>Xi, Xing</creator><creator>Yang, Peng</creator><creator>Wu, Dapeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5042-7884</orcidid><orcidid>https://orcid.org/0000-0002-4884-542X</orcidid></search><sort><creationdate>20180401</creationdate><title>Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment</title><author>Yin, Chao ; Xiao, Zhenyu ; Cao, Xianbin ; Xi, Xing ; Yang, Peng ; Wu, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Flight</topic><topic>Geography</topic><topic>Low altitude</topic><topic>Low altitude urban environment</topic><topic>Multiple objective analysis</topic><topic>Obstacle avoidance</topic><topic>offline and online search</topic><topic>Path planning</topic><topic>Product design</topic><topic>Safety</topic><topic>safety index map (SIM)</topic><topic>Searching</topic><topic>Sensors</topic><topic>unmanned aerial vehicle (UAV) path planning</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chao</creatorcontrib><creatorcontrib>Xiao, Zhenyu</creatorcontrib><creatorcontrib>Cao, Xianbin</creatorcontrib><creatorcontrib>Xi, Xing</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Wu, Dapeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Chao</au><au>Xiao, Zhenyu</au><au>Cao, Xianbin</au><au>Xi, Xing</au><au>Yang, Peng</au><au>Wu, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>5</volume><issue>2</issue><spage>546</spage><epage>558</epage><pages>546-558</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This paper is concerned with path planning for unmanned aerial vehicles (UAVs) flying through low altitude urban environment. Although many different path planning algorithms have been proposed to find optimal or near-optimal collision-free paths for UAVs, most of them either do not consider dynamic obstacle avoidance or do not incorporate multiple objectives. In this paper, we propose a multiobjective path planning (MOPP) framework to explore a suitable path for a UAV operating in a dynamic urban environment, where safety level is considered in the proposed framework to guarantee the safety of UAV in addition to travel time. To this aim, two types of safety index maps (SIMs) are developed first to capture static obstacles in the geography map and unexpected obstacles that are unavailable in the geography map. Then an MOPP method is proposed by jointly using offline and online search, where the offline search is based on the static SIM and helps shorten the travel time and avoid static obstacles, while the online search is based on the dynamic SIM of unexpected obstacles and helps bypass unexpected obstacles quickly. Extensive experimental results verify the effectiveness of the proposed framework under the dynamic urban environment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2017.2717078</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5042-7884</orcidid><orcidid>https://orcid.org/0000-0002-4884-542X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2018-04, Vol.5 (2), p.546-558
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2017_2717078
source IEEE Xplore (Online service)
subjects Collision avoidance
Collision dynamics
Flight
Geography
Low altitude
Low altitude urban environment
Multiple objective analysis
Obstacle avoidance
offline and online search
Path planning
Product design
Safety
safety index map (SIM)
Searching
Sensors
unmanned aerial vehicle (UAV) path planning
Unmanned aerial vehicles
Urban areas
Vehicle dynamics
title Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offline%20and%20Online%20Search:%20UAV%20Multiobjective%20Path%20Planning%20Under%20Dynamic%20Urban%20Environment&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yin,%20Chao&rft.date=2018-04-01&rft.volume=5&rft.issue=2&rft.spage=546&rft.epage=558&rft.pages=546-558&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2717078&rft_dat=%3Cproquest_cross%3E2025107006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e05c672f80cea8cbcc7c3b94f5560823f75a9dab96637fc5725b3bf73266acbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025107006&rft_id=info:pmid/&rft_ieee_id=7953494&rfr_iscdi=true