Loading…
Modeling the Internet of Things Under Attack: A G-network Approach
This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dyn...
Saved in:
Published in: | IEEE internet of things journal 2017-12, Vol.4 (6), p.1964-1977 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3 |
container_end_page | 1977 |
container_issue | 6 |
container_start_page | 1964 |
container_title | IEEE internet of things journal |
container_volume | 4 |
creator | Sarigiannidis, Panagiotis Karapistoli, Eirini Economides, Anastasios A. |
description | This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks. |
doi_str_mv | 10.1109/JIOT.2017.2719623 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2719623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7956134</ieee_id><sourcerecordid>1975054468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aSXazibe12Fqp9NKeQ8zO2i93a5Ii_ntTWsTTDDPPOwMPIbfAhgBMP7xO54shZ1AOeQlacnFBelzwMsul5Jf_-msyCGHDGEuxIpE98vTW1bhbtx80rpBO24i-xUi7hi5WaRrosq3R0ypG67aPtKKTLO2_O7-l1X7vO-tWN-SqsbuAg3Ptk-X4eTF6yWbzyXRUzTLHtYgZomCyQIWKKQU2r0XdoIASOOONckIoqWRevENTKKsbJZy2TteuVgC21Cj65P50N739OmCIZtMdfJteGtBlwYo8lypRcKKc70Lw2Ji9X39a_2OAmaMtc7RljrbM2VbK3J0ya0T840tdSBC5-AUW6WO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975054468</pqid></control><display><type>article</type><title>Modeling the Internet of Things Under Attack: A G-network Approach</title><source>IEEE Xplore (Online service)</source><creator>Sarigiannidis, Panagiotis ; Karapistoli, Eirini ; Economides, Anastasios A.</creator><creatorcontrib>Sarigiannidis, Panagiotis ; Karapistoli, Eirini ; Economides, Anastasios A.</creatorcontrib><description>This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2719623</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Arrivals ; Biological system modeling ; Cybersecurity ; Data acquisition ; Data collection ; Data integrity ; Data loss ; Data transmission ; Digital media ; G-networks ; Internet of Things ; Internet of Things (IoT) ; Jamming ; Luminous intensity ; Mathematical models ; Model accuracy ; modeling ; Numerical models ; Packets (communication) ; queuing theory ; Routing ; Security ; Traffic information</subject><ispartof>IEEE internet of things journal, 2017-12, Vol.4 (6), p.1964-1977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</citedby><cites>FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</cites><orcidid>0000-0001-6042-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7956134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Sarigiannidis, Panagiotis</creatorcontrib><creatorcontrib>Karapistoli, Eirini</creatorcontrib><creatorcontrib>Economides, Anastasios A.</creatorcontrib><title>Modeling the Internet of Things Under Attack: A G-network Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.</description><subject>Analytical models</subject><subject>Arrivals</subject><subject>Biological system modeling</subject><subject>Cybersecurity</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data integrity</subject><subject>Data loss</subject><subject>Data transmission</subject><subject>Digital media</subject><subject>G-networks</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Jamming</subject><subject>Luminous intensity</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>modeling</subject><subject>Numerical models</subject><subject>Packets (communication)</subject><subject>queuing theory</subject><subject>Routing</subject><subject>Security</subject><subject>Traffic information</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aSXazibe12Fqp9NKeQ8zO2i93a5Ii_ntTWsTTDDPPOwMPIbfAhgBMP7xO54shZ1AOeQlacnFBelzwMsul5Jf_-msyCGHDGEuxIpE98vTW1bhbtx80rpBO24i-xUi7hi5WaRrosq3R0ypG67aPtKKTLO2_O7-l1X7vO-tWN-SqsbuAg3Ptk-X4eTF6yWbzyXRUzTLHtYgZomCyQIWKKQU2r0XdoIASOOONckIoqWRevENTKKsbJZy2TteuVgC21Cj65P50N739OmCIZtMdfJteGtBlwYo8lypRcKKc70Lw2Ji9X39a_2OAmaMtc7RljrbM2VbK3J0ya0T840tdSBC5-AUW6WO0</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Sarigiannidis, Panagiotis</creator><creator>Karapistoli, Eirini</creator><creator>Economides, Anastasios A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6042-0355</orcidid></search><sort><creationdate>20171201</creationdate><title>Modeling the Internet of Things Under Attack: A G-network Approach</title><author>Sarigiannidis, Panagiotis ; Karapistoli, Eirini ; Economides, Anastasios A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Arrivals</topic><topic>Biological system modeling</topic><topic>Cybersecurity</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data integrity</topic><topic>Data loss</topic><topic>Data transmission</topic><topic>Digital media</topic><topic>G-networks</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Jamming</topic><topic>Luminous intensity</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>modeling</topic><topic>Numerical models</topic><topic>Packets (communication)</topic><topic>queuing theory</topic><topic>Routing</topic><topic>Security</topic><topic>Traffic information</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarigiannidis, Panagiotis</creatorcontrib><creatorcontrib>Karapistoli, Eirini</creatorcontrib><creatorcontrib>Economides, Anastasios A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarigiannidis, Panagiotis</au><au>Karapistoli, Eirini</au><au>Economides, Anastasios A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Internet of Things Under Attack: A G-network Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>4</volume><issue>6</issue><spage>1964</spage><epage>1977</epage><pages>1964-1977</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2017.2719623</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6042-0355</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2017-12, Vol.4 (6), p.1964-1977 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2017_2719623 |
source | IEEE Xplore (Online service) |
subjects | Analytical models Arrivals Biological system modeling Cybersecurity Data acquisition Data collection Data integrity Data loss Data transmission Digital media G-networks Internet of Things Internet of Things (IoT) Jamming Luminous intensity Mathematical models Model accuracy modeling Numerical models Packets (communication) queuing theory Routing Security Traffic information |
title | Modeling the Internet of Things Under Attack: A G-network Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Internet%20of%20Things%20Under%20Attack:%20A%20G-network%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Sarigiannidis,%20Panagiotis&rft.date=2017-12-01&rft.volume=4&rft.issue=6&rft.spage=1964&rft.epage=1977&rft.pages=1964-1977&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2719623&rft_dat=%3Cproquest_cross%3E1975054468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975054468&rft_id=info:pmid/&rft_ieee_id=7956134&rfr_iscdi=true |