Loading…

Modeling the Internet of Things Under Attack: A G-network Approach

This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dyn...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2017-12, Vol.4 (6), p.1964-1977
Main Authors: Sarigiannidis, Panagiotis, Karapistoli, Eirini, Economides, Anastasios A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3
cites cdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3
container_end_page 1977
container_issue 6
container_start_page 1964
container_title IEEE internet of things journal
container_volume 4
creator Sarigiannidis, Panagiotis
Karapistoli, Eirini
Economides, Anastasios A.
description This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.
doi_str_mv 10.1109/JIOT.2017.2719623
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2017_2719623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7956134</ieee_id><sourcerecordid>1975054468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aSXazibe12Fqp9NKeQ8zO2i93a5Ii_ntTWsTTDDPPOwMPIbfAhgBMP7xO54shZ1AOeQlacnFBelzwMsul5Jf_-msyCGHDGEuxIpE98vTW1bhbtx80rpBO24i-xUi7hi5WaRrosq3R0ypG67aPtKKTLO2_O7-l1X7vO-tWN-SqsbuAg3Ptk-X4eTF6yWbzyXRUzTLHtYgZomCyQIWKKQU2r0XdoIASOOONckIoqWRevENTKKsbJZy2TteuVgC21Cj65P50N739OmCIZtMdfJteGtBlwYo8lypRcKKc70Lw2Ji9X39a_2OAmaMtc7RljrbM2VbK3J0ya0T840tdSBC5-AUW6WO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975054468</pqid></control><display><type>article</type><title>Modeling the Internet of Things Under Attack: A G-network Approach</title><source>IEEE Xplore (Online service)</source><creator>Sarigiannidis, Panagiotis ; Karapistoli, Eirini ; Economides, Anastasios A.</creator><creatorcontrib>Sarigiannidis, Panagiotis ; Karapistoli, Eirini ; Economides, Anastasios A.</creatorcontrib><description>This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2017.2719623</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Arrivals ; Biological system modeling ; Cybersecurity ; Data acquisition ; Data collection ; Data integrity ; Data loss ; Data transmission ; Digital media ; G-networks ; Internet of Things ; Internet of Things (IoT) ; Jamming ; Luminous intensity ; Mathematical models ; Model accuracy ; modeling ; Numerical models ; Packets (communication) ; queuing theory ; Routing ; Security ; Traffic information</subject><ispartof>IEEE internet of things journal, 2017-12, Vol.4 (6), p.1964-1977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</citedby><cites>FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</cites><orcidid>0000-0001-6042-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7956134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Sarigiannidis, Panagiotis</creatorcontrib><creatorcontrib>Karapistoli, Eirini</creatorcontrib><creatorcontrib>Economides, Anastasios A.</creatorcontrib><title>Modeling the Internet of Things Under Attack: A G-network Approach</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.</description><subject>Analytical models</subject><subject>Arrivals</subject><subject>Biological system modeling</subject><subject>Cybersecurity</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data integrity</subject><subject>Data loss</subject><subject>Data transmission</subject><subject>Digital media</subject><subject>G-networks</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Jamming</subject><subject>Luminous intensity</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>modeling</subject><subject>Numerical models</subject><subject>Packets (communication)</subject><subject>queuing theory</subject><subject>Routing</subject><subject>Security</subject><subject>Traffic information</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aSXazibe12Fqp9NKeQ8zO2i93a5Ii_ntTWsTTDDPPOwMPIbfAhgBMP7xO54shZ1AOeQlacnFBelzwMsul5Jf_-msyCGHDGEuxIpE98vTW1bhbtx80rpBO24i-xUi7hi5WaRrosq3R0ypG67aPtKKTLO2_O7-l1X7vO-tWN-SqsbuAg3Ptk-X4eTF6yWbzyXRUzTLHtYgZomCyQIWKKQU2r0XdoIASOOONckIoqWRevENTKKsbJZy2TteuVgC21Cj65P50N739OmCIZtMdfJteGtBlwYo8lypRcKKc70Lw2Ji9X39a_2OAmaMtc7RljrbM2VbK3J0ya0T840tdSBC5-AUW6WO0</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Sarigiannidis, Panagiotis</creator><creator>Karapistoli, Eirini</creator><creator>Economides, Anastasios A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6042-0355</orcidid></search><sort><creationdate>20171201</creationdate><title>Modeling the Internet of Things Under Attack: A G-network Approach</title><author>Sarigiannidis, Panagiotis ; Karapistoli, Eirini ; Economides, Anastasios A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Arrivals</topic><topic>Biological system modeling</topic><topic>Cybersecurity</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data integrity</topic><topic>Data loss</topic><topic>Data transmission</topic><topic>Digital media</topic><topic>G-networks</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Jamming</topic><topic>Luminous intensity</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>modeling</topic><topic>Numerical models</topic><topic>Packets (communication)</topic><topic>queuing theory</topic><topic>Routing</topic><topic>Security</topic><topic>Traffic information</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarigiannidis, Panagiotis</creatorcontrib><creatorcontrib>Karapistoli, Eirini</creatorcontrib><creatorcontrib>Economides, Anastasios A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarigiannidis, Panagiotis</au><au>Karapistoli, Eirini</au><au>Economides, Anastasios A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Internet of Things Under Attack: A G-network Approach</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>4</volume><issue>6</issue><spage>1964</spage><epage>1977</epage><pages>1964-1977</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This paper introduces a novel, analytic framework for modeling security attacks in Internet of Things (IoT) infrastructures. The devised model is quite generic, and as such, it could flexibly be adapted to various IoT architectures. Its flexibility lies in the underlying theory; it is based on a dynamic G-network, where the positive arrivals denote the data streams that originated from the various data collection networks (e.g., sensor networks), while the negative arrivals denote the security attacks that result in data losses (e.g., jamming attacks). In addition, we take into account the intensity of an attack by considering both light and heavy attacks. The light attack implies simple losses of traffic data, while the heavy attack causes massive data loss. The introduced model is solved subject to the arrival and departure rates in terms of: 1) average number of data packets in the application domain and 2) attack impact (loss rate). A comprehensive verification discussion accompanied by numerous numerical results verify the accuracy of the proposed model. Moreover, the assessment of the presented model highlights notable operation characteristics of the underlying IoT system under light and heavy attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2017.2719623</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6042-0355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2017-12, Vol.4 (6), p.1964-1977
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2017_2719623
source IEEE Xplore (Online service)
subjects Analytical models
Arrivals
Biological system modeling
Cybersecurity
Data acquisition
Data collection
Data integrity
Data loss
Data transmission
Digital media
G-networks
Internet of Things
Internet of Things (IoT)
Jamming
Luminous intensity
Mathematical models
Model accuracy
modeling
Numerical models
Packets (communication)
queuing theory
Routing
Security
Traffic information
title Modeling the Internet of Things Under Attack: A G-network Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Internet%20of%20Things%20Under%20Attack:%20A%20G-network%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Sarigiannidis,%20Panagiotis&rft.date=2017-12-01&rft.volume=4&rft.issue=6&rft.spage=1964&rft.epage=1977&rft.pages=1964-1977&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2017.2719623&rft_dat=%3Cproquest_cross%3E1975054468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-ee3065e8e80881a4d3dfe3171202f8c33868645b1f58a9f83c9ac9dcd811a79e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975054468&rft_id=info:pmid/&rft_ieee_id=7956134&rfr_iscdi=true