Loading…
Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication
Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the e...
Saved in:
Published in: | IEEE internet of things journal 2019-02, Vol.6 (1), p.765-775 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3 |
container_end_page | 775 |
container_issue | 1 |
container_start_page | 765 |
container_title | IEEE internet of things journal |
container_volume | 6 |
creator | Guo, Huayan Zhang, Qianqian Xiao, Sa Liang, Ying-Chang |
description | Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI. |
doi_str_mv | 10.1109/JIOT.2018.2856633 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2018_2856633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8411483</ieee_id><sourcerecordid>2185730626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpAyAukTin-Cdx7GOpChQV9VLOluM6lUtiB9tB8PY4aoU47e7szK70AXCL4BwhyB9e19vdHEPE5piVlBJyASaY4CovKMWX__prMAvhCCFMsRJxOgGb1XffOhONPWRvQxtN3-psYaO2VoascT5buoNN-68kd7XRNmaPUn0EJWPU47brBmvSZJy9AVeNbIOenesUvD-tdsuXfLN9Xi8Xm1xhTmKOuaoYlzWpqz2hpaqJYrDgnChYwCQg2ex5Jcum3CNIudJYN5xQiKUkjEpFpuD-dLf37nPQIYqjG7xNLwVGrKwIpJgmFzq5lHcheN2I3ptO-h-BoBi5iZGbGLmJM7eUuTtljNb6z88KhApGyC-FKGj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185730626</pqid></control><display><type>article</type><title>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</title><source>IEEE Xplore (Online service)</source><creator>Guo, Huayan ; Zhang, Qianqian ; Xiao, Sa ; Liang, Ying-Chang</creator><creatorcontrib>Guo, Huayan ; Zhang, Qianqian ; Xiao, Sa ; Liang, Ying-Chang</creatorcontrib><description>Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2856633</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aging ; Ambient backscatter communications (AmBCs) ; Antennas ; Backscatter ; Backscattering ; Beamforming ; Clustering ; cognitive radio ; Communications systems ; Detectors ; Error detection ; Floors ; interference cancelation ; Internet of Things ; Legacy systems ; multiple antennas ; Radio frequency ; Receiving antennas ; statistical machine learning</subject><ispartof>IEEE internet of things journal, 2019-02, Vol.6 (1), p.765-775</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</citedby><cites>FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</cites><orcidid>0000-0001-9044-274X ; 0000-0003-2671-5090 ; 0000-0001-8419-150X ; 0000-0002-9198-2358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8411483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><title>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.</description><subject>Aging</subject><subject>Ambient backscatter communications (AmBCs)</subject><subject>Antennas</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Beamforming</subject><subject>Clustering</subject><subject>cognitive radio</subject><subject>Communications systems</subject><subject>Detectors</subject><subject>Error detection</subject><subject>Floors</subject><subject>interference cancelation</subject><subject>Internet of Things</subject><subject>Legacy systems</subject><subject>multiple antennas</subject><subject>Radio frequency</subject><subject>Receiving antennas</subject><subject>statistical machine learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EElXpAyAukTin-Cdx7GOpChQV9VLOluM6lUtiB9tB8PY4aoU47e7szK70AXCL4BwhyB9e19vdHEPE5piVlBJyASaY4CovKMWX__prMAvhCCFMsRJxOgGb1XffOhONPWRvQxtN3-psYaO2VoascT5buoNN-68kd7XRNmaPUn0EJWPU47brBmvSZJy9AVeNbIOenesUvD-tdsuXfLN9Xi8Xm1xhTmKOuaoYlzWpqz2hpaqJYrDgnChYwCQg2ex5Jcum3CNIudJYN5xQiKUkjEpFpuD-dLf37nPQIYqjG7xNLwVGrKwIpJgmFzq5lHcheN2I3ptO-h-BoBi5iZGbGLmJM7eUuTtljNb6z88KhApGyC-FKGj8</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Guo, Huayan</creator><creator>Zhang, Qianqian</creator><creator>Xiao, Sa</creator><creator>Liang, Ying-Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0002-9198-2358</orcidid></search><sort><creationdate>20190201</creationdate><title>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</title><author>Guo, Huayan ; Zhang, Qianqian ; Xiao, Sa ; Liang, Ying-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Ambient backscatter communications (AmBCs)</topic><topic>Antennas</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Beamforming</topic><topic>Clustering</topic><topic>cognitive radio</topic><topic>Communications systems</topic><topic>Detectors</topic><topic>Error detection</topic><topic>Floors</topic><topic>interference cancelation</topic><topic>Internet of Things</topic><topic>Legacy systems</topic><topic>multiple antennas</topic><topic>Radio frequency</topic><topic>Receiving antennas</topic><topic>statistical machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huayan</au><au>Zhang, Qianqian</au><au>Xiao, Sa</au><au>Liang, Ying-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>765</spage><epage>775</epage><pages>765-775</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2856633</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0002-9198-2358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2019-02, Vol.6 (1), p.765-775 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JIOT_2018_2856633 |
source | IEEE Xplore (Online service) |
subjects | Aging Ambient backscatter communications (AmBCs) Antennas Backscatter Backscattering Beamforming Clustering cognitive radio Communications systems Detectors Error detection Floors interference cancelation Internet of Things Legacy systems multiple antennas Radio frequency Receiving antennas statistical machine learning |
title | Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T21%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Multiple%20Antennas%20for%20Cognitive%20Ambient%20Backscatter%20Communication&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Guo,%20Huayan&rft.date=2019-02-01&rft.volume=6&rft.issue=1&rft.spage=765&rft.epage=775&rft.pages=765-775&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2856633&rft_dat=%3Cproquest_cross%3E2185730626%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2185730626&rft_id=info:pmid/&rft_ieee_id=8411483&rfr_iscdi=true |