Loading…

Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication

Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2019-02, Vol.6 (1), p.765-775
Main Authors: Guo, Huayan, Zhang, Qianqian, Xiao, Sa, Liang, Ying-Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3
cites cdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3
container_end_page 775
container_issue 1
container_start_page 765
container_title IEEE internet of things journal
container_volume 6
creator Guo, Huayan
Zhang, Qianqian
Xiao, Sa
Liang, Ying-Chang
description Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.
doi_str_mv 10.1109/JIOT.2018.2856633
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2018_2856633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8411483</ieee_id><sourcerecordid>2185730626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpAyAukTin-Cdx7GOpChQV9VLOluM6lUtiB9tB8PY4aoU47e7szK70AXCL4BwhyB9e19vdHEPE5piVlBJyASaY4CovKMWX__prMAvhCCFMsRJxOgGb1XffOhONPWRvQxtN3-psYaO2VoascT5buoNN-68kd7XRNmaPUn0EJWPU47brBmvSZJy9AVeNbIOenesUvD-tdsuXfLN9Xi8Xm1xhTmKOuaoYlzWpqz2hpaqJYrDgnChYwCQg2ex5Jcum3CNIudJYN5xQiKUkjEpFpuD-dLf37nPQIYqjG7xNLwVGrKwIpJgmFzq5lHcheN2I3ptO-h-BoBi5iZGbGLmJM7eUuTtljNb6z88KhApGyC-FKGj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185730626</pqid></control><display><type>article</type><title>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</title><source>IEEE Xplore (Online service)</source><creator>Guo, Huayan ; Zhang, Qianqian ; Xiao, Sa ; Liang, Ying-Chang</creator><creatorcontrib>Guo, Huayan ; Zhang, Qianqian ; Xiao, Sa ; Liang, Ying-Chang</creatorcontrib><description>Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2856633</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aging ; Ambient backscatter communications (AmBCs) ; Antennas ; Backscatter ; Backscattering ; Beamforming ; Clustering ; cognitive radio ; Communications systems ; Detectors ; Error detection ; Floors ; interference cancelation ; Internet of Things ; Legacy systems ; multiple antennas ; Radio frequency ; Receiving antennas ; statistical machine learning</subject><ispartof>IEEE internet of things journal, 2019-02, Vol.6 (1), p.765-775</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</citedby><cites>FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</cites><orcidid>0000-0001-9044-274X ; 0000-0003-2671-5090 ; 0000-0001-8419-150X ; 0000-0002-9198-2358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8411483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><title>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.</description><subject>Aging</subject><subject>Ambient backscatter communications (AmBCs)</subject><subject>Antennas</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Beamforming</subject><subject>Clustering</subject><subject>cognitive radio</subject><subject>Communications systems</subject><subject>Detectors</subject><subject>Error detection</subject><subject>Floors</subject><subject>interference cancelation</subject><subject>Internet of Things</subject><subject>Legacy systems</subject><subject>multiple antennas</subject><subject>Radio frequency</subject><subject>Receiving antennas</subject><subject>statistical machine learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EElXpAyAukTin-Cdx7GOpChQV9VLOluM6lUtiB9tB8PY4aoU47e7szK70AXCL4BwhyB9e19vdHEPE5piVlBJyASaY4CovKMWX__prMAvhCCFMsRJxOgGb1XffOhONPWRvQxtN3-psYaO2VoascT5buoNN-68kd7XRNmaPUn0EJWPU47brBmvSZJy9AVeNbIOenesUvD-tdsuXfLN9Xi8Xm1xhTmKOuaoYlzWpqz2hpaqJYrDgnChYwCQg2ex5Jcum3CNIudJYN5xQiKUkjEpFpuD-dLf37nPQIYqjG7xNLwVGrKwIpJgmFzq5lHcheN2I3ptO-h-BoBi5iZGbGLmJM7eUuTtljNb6z88KhApGyC-FKGj8</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Guo, Huayan</creator><creator>Zhang, Qianqian</creator><creator>Xiao, Sa</creator><creator>Liang, Ying-Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0002-9198-2358</orcidid></search><sort><creationdate>20190201</creationdate><title>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</title><author>Guo, Huayan ; Zhang, Qianqian ; Xiao, Sa ; Liang, Ying-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Ambient backscatter communications (AmBCs)</topic><topic>Antennas</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Beamforming</topic><topic>Clustering</topic><topic>cognitive radio</topic><topic>Communications systems</topic><topic>Detectors</topic><topic>Error detection</topic><topic>Floors</topic><topic>interference cancelation</topic><topic>Internet of Things</topic><topic>Legacy systems</topic><topic>multiple antennas</topic><topic>Radio frequency</topic><topic>Receiving antennas</topic><topic>statistical machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huayan</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Liang, Ying-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huayan</au><au>Zhang, Qianqian</au><au>Xiao, Sa</au><au>Liang, Ying-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>765</spage><epage>775</epage><pages>765-775</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Cognitive ambient backscatter communication is a novel spectrum sharing paradigm, in which the backscatter system shares not only the same spectrum, but also the same radio-frequency source with the legacy system. Conventional energy detector (ED) suffers from severe error floor problem due to the existence of co-channel direct link interference (DLI) from the legacy system. In this paper, novel error-floor-free detectors are proposed to tackle the DLI using multiple receive antennas at the reader. First, beamforming-assisted ED and likelihood-ratio-based detector are proposed for backscatter symbol detection when the reader has perfect channel state information (CSI). Then a novel statistical clustering framework is proposed for joint CSI feature learning and backscatter symbol detection. Extensive simulation results have shown that the proposed methods can significantly outperform the conventional ED. In addition, the proposed clustering-based methods perform comparably as their counterparts with perfect CSI.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2856633</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0003-2671-5090</orcidid><orcidid>https://orcid.org/0000-0001-8419-150X</orcidid><orcidid>https://orcid.org/0000-0002-9198-2358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2019-02, Vol.6 (1), p.765-775
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2018_2856633
source IEEE Xplore (Online service)
subjects Aging
Ambient backscatter communications (AmBCs)
Antennas
Backscatter
Backscattering
Beamforming
Clustering
cognitive radio
Communications systems
Detectors
Error detection
Floors
interference cancelation
Internet of Things
Legacy systems
multiple antennas
Radio frequency
Receiving antennas
statistical machine learning
title Exploiting Multiple Antennas for Cognitive Ambient Backscatter Communication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T21%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Multiple%20Antennas%20for%20Cognitive%20Ambient%20Backscatter%20Communication&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Guo,%20Huayan&rft.date=2019-02-01&rft.volume=6&rft.issue=1&rft.spage=765&rft.epage=775&rft.pages=765-775&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2856633&rft_dat=%3Cproquest_cross%3E2185730626%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-29c789ab3b7d365cb3c804993c0403651afd97a5f5d1069ce2ef93602aa386ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2185730626&rft_id=info:pmid/&rft_ieee_id=8411483&rfr_iscdi=true