Loading…
Joint Deployment Design and Phase-Shift of IRS-assisted 6G networks: An Experience-Driven Approach
The performance of wireless networks is constrained by the dynamic and random nature of the wireless channels. Intelligent reflecting surface (IRS) is a promising approach that can smartly reconfigure wireless propagation environment to increase the spectral efficiency in 6G networks. However, IRS d...
Saved in:
Published in: | IEEE internet of things journal 2023-10, Vol.10 (20), p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of wireless networks is constrained by the dynamic and random nature of the wireless channels. Intelligent reflecting surface (IRS) is a promising approach that can smartly reconfigure wireless propagation environment to increase the spectral efficiency in 6G networks. However, IRS deployment optimization in a complex and random 6G environment remains a limiting factor in improving the performance. To address the issue, we propose a deep reinforcement learning (DRL) network empowered by a generative adversarial network (GAN) to jointly optimize the IRS placement and reflecting beamforming matrix of IRS as well as the transmit beamforming at the base station (BS) in an IRS-assisted wireless network. Simulation results show that the proposed technique outperforms the benchmark scheme in terms of achievable rate and signal-to-noise ratio (SNR) by learning the optimal IRS locations in an IRS-aided wireless network. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2023.3278384 |