Loading…

Semantic and Logical Communication-Control Codesign for Correlated Dynamical Systems

In this study, we delve into the intricacies of semantic communication-control codesign (CoCoCo) for wireless mixed logical dynamical (MLD) systems operating under signal temporal logic (STL) specifications. Our novel contribution, the MLD-Koopman autoencoder (AE), emerges as a method to linearize t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2024-04, Vol.11 (7), p.12631-12648
Main Authors: Girgis, Abanoub M., Seo, Hyowoon, Park, Jihong, Bennis, Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-39a11692416d698929f728da034ad1de80a03cec4059fe4f89be689a31961a3e3
container_end_page 12648
container_issue 7
container_start_page 12631
container_title IEEE internet of things journal
container_volume 11
creator Girgis, Abanoub M.
Seo, Hyowoon
Park, Jihong
Bennis, Mehdi
description In this study, we delve into the intricacies of semantic communication-control codesign (CoCoCo) for wireless mixed logical dynamical (MLD) systems operating under signal temporal logic (STL) specifications. Our novel contribution, the MLD-Koopman autoencoder (AE), emerges as a method to linearize the progression of system states within a feature space. This linearization effectively mitigates the communication and computation costs associated with MLD system control. To surmount the challenges posed by multiple correlated MLD systems that possess distinct logical control rules while sharing baseline dynamics, we present the compositional logical dynamical (CLD)-Koopman AE as a remedy to the scalability limitations of the MLD-Koopman AE. This innovative approach incorporates two pivotal models-the dynamics semantic Koopman (DSK) model, capturing semantic correlations among MLD systems, and the logical semantic Koopman (LSK) model, encoding logical control rules. These models portray the linear evolution of baseline dynamics and control rules within a feature space, facilitating predictions of future states for multiple MLD systems with constrained communication. Validation comes from simulations on large-scale inverted cart-pole systems, demonstrating the prowess of the CLD-Koopman AE in achieving an average state prediction performance 82.77% higher than other predictive benchmarks, particularly evident at a signal-to-noise ratio (SNR) of 10 dB.
doi_str_mv 10.1109/JIOT.2023.3337109
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2023_3337109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330567</ieee_id><sourcerecordid>2995147412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-39a11692416d698929f728da034ad1de80a03cec4059fe4f89be689a31961a3e3</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EElXpB0BiiMSc4n9x4hEFKEWVOrTMlokvVarGLrYz9Nvj0A6d7t3p_e5OD6FHgueEYPnytVxv5xRTNmeMlWlygyaU0TLnQtDbK32PZiHsMcYJK4gUE7TdQK9t7JpMW5Ot3K5r9CGrXd8PNsnYOZvXzkbvxqmB0O1s1jqfGu_hoCOY7O1kdf_PbU4hQh8e0F2rDwFmlzpF3x_v2_ozX60Xy_p1lTe0kjFnUhMiJOVEGCErSWVb0spozLg2xECFk2yg4biQLfC2kj8gKqlZ-pxoBmyKns97j979DhCi2rvB23RSUSkLwktOaHKRs6vxLgQPrTr6rtf-pAhWY35qzE-N-alLfol5OjMdAFz5GcOFKNkfN0BrZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995147412</pqid></control><display><type>article</type><title>Semantic and Logical Communication-Control Codesign for Correlated Dynamical Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Girgis, Abanoub M. ; Seo, Hyowoon ; Park, Jihong ; Bennis, Mehdi</creator><creatorcontrib>Girgis, Abanoub M. ; Seo, Hyowoon ; Park, Jihong ; Bennis, Mehdi</creatorcontrib><description>In this study, we delve into the intricacies of semantic communication-control codesign (CoCoCo) for wireless mixed logical dynamical (MLD) systems operating under signal temporal logic (STL) specifications. Our novel contribution, the MLD-Koopman autoencoder (AE), emerges as a method to linearize the progression of system states within a feature space. This linearization effectively mitigates the communication and computation costs associated with MLD system control. To surmount the challenges posed by multiple correlated MLD systems that possess distinct logical control rules while sharing baseline dynamics, we present the compositional logical dynamical (CLD)-Koopman AE as a remedy to the scalability limitations of the MLD-Koopman AE. This innovative approach incorporates two pivotal models-the dynamics semantic Koopman (DSK) model, capturing semantic correlations among MLD systems, and the logical semantic Koopman (LSK) model, encoding logical control rules. These models portray the linear evolution of baseline dynamics and control rules within a feature space, facilitating predictions of future states for multiple MLD systems with constrained communication. Validation comes from simulations on large-scale inverted cart-pole systems, demonstrating the prowess of the CLD-Koopman AE in achieving an average state prediction performance 82.77% higher than other predictive benchmarks, particularly evident at a signal-to-noise ratio (SNR) of 10 dB.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3337109</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Co-design ; Communication ; communication-control codesign (CoCoCo) ; Control systems ; Correlation ; Costs ; Dynamic scheduling ; Dynamical systems ; Information sharing ; Noise prediction ; predictive control ; Predictive models ; Semantics ; signal temporal logic (STL) ; Signal to noise ratio ; Temporal logic ; Vehicle dynamics</subject><ispartof>IEEE internet of things journal, 2024-04, Vol.11 (7), p.12631-12648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-39a11692416d698929f728da034ad1de80a03cec4059fe4f89be689a31961a3e3</cites><orcidid>0000-0003-0261-0171 ; 0000-0002-4981-5409 ; 0000-0002-8681-9476 ; 0000-0001-7623-6552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Girgis, Abanoub M.</creatorcontrib><creatorcontrib>Seo, Hyowoon</creatorcontrib><creatorcontrib>Park, Jihong</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><title>Semantic and Logical Communication-Control Codesign for Correlated Dynamical Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In this study, we delve into the intricacies of semantic communication-control codesign (CoCoCo) for wireless mixed logical dynamical (MLD) systems operating under signal temporal logic (STL) specifications. Our novel contribution, the MLD-Koopman autoencoder (AE), emerges as a method to linearize the progression of system states within a feature space. This linearization effectively mitigates the communication and computation costs associated with MLD system control. To surmount the challenges posed by multiple correlated MLD systems that possess distinct logical control rules while sharing baseline dynamics, we present the compositional logical dynamical (CLD)-Koopman AE as a remedy to the scalability limitations of the MLD-Koopman AE. This innovative approach incorporates two pivotal models-the dynamics semantic Koopman (DSK) model, capturing semantic correlations among MLD systems, and the logical semantic Koopman (LSK) model, encoding logical control rules. These models portray the linear evolution of baseline dynamics and control rules within a feature space, facilitating predictions of future states for multiple MLD systems with constrained communication. Validation comes from simulations on large-scale inverted cart-pole systems, demonstrating the prowess of the CLD-Koopman AE in achieving an average state prediction performance 82.77% higher than other predictive benchmarks, particularly evident at a signal-to-noise ratio (SNR) of 10 dB.</description><subject>Co-design</subject><subject>Communication</subject><subject>communication-control codesign (CoCoCo)</subject><subject>Control systems</subject><subject>Correlation</subject><subject>Costs</subject><subject>Dynamic scheduling</subject><subject>Dynamical systems</subject><subject>Information sharing</subject><subject>Noise prediction</subject><subject>predictive control</subject><subject>Predictive models</subject><subject>Semantics</subject><subject>signal temporal logic (STL)</subject><subject>Signal to noise ratio</subject><subject>Temporal logic</subject><subject>Vehicle dynamics</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD9PwzAQxS0EElXpB0BiiMSc4n9x4hEFKEWVOrTMlokvVarGLrYz9Nvj0A6d7t3p_e5OD6FHgueEYPnytVxv5xRTNmeMlWlygyaU0TLnQtDbK32PZiHsMcYJK4gUE7TdQK9t7JpMW5Ot3K5r9CGrXd8PNsnYOZvXzkbvxqmB0O1s1jqfGu_hoCOY7O1kdf_PbU4hQh8e0F2rDwFmlzpF3x_v2_ozX60Xy_p1lTe0kjFnUhMiJOVEGCErSWVb0spozLg2xECFk2yg4biQLfC2kj8gKqlZ-pxoBmyKns97j979DhCi2rvB23RSUSkLwktOaHKRs6vxLgQPrTr6rtf-pAhWY35qzE-N-alLfol5OjMdAFz5GcOFKNkfN0BrZw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Girgis, Abanoub M.</creator><creator>Seo, Hyowoon</creator><creator>Park, Jihong</creator><creator>Bennis, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0002-4981-5409</orcidid><orcidid>https://orcid.org/0000-0002-8681-9476</orcidid><orcidid>https://orcid.org/0000-0001-7623-6552</orcidid></search><sort><creationdate>20240401</creationdate><title>Semantic and Logical Communication-Control Codesign for Correlated Dynamical Systems</title><author>Girgis, Abanoub M. ; Seo, Hyowoon ; Park, Jihong ; Bennis, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-39a11692416d698929f728da034ad1de80a03cec4059fe4f89be689a31961a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Co-design</topic><topic>Communication</topic><topic>communication-control codesign (CoCoCo)</topic><topic>Control systems</topic><topic>Correlation</topic><topic>Costs</topic><topic>Dynamic scheduling</topic><topic>Dynamical systems</topic><topic>Information sharing</topic><topic>Noise prediction</topic><topic>predictive control</topic><topic>Predictive models</topic><topic>Semantics</topic><topic>signal temporal logic (STL)</topic><topic>Signal to noise ratio</topic><topic>Temporal logic</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Girgis, Abanoub M.</creatorcontrib><creatorcontrib>Seo, Hyowoon</creatorcontrib><creatorcontrib>Park, Jihong</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girgis, Abanoub M.</au><au>Seo, Hyowoon</au><au>Park, Jihong</au><au>Bennis, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic and Logical Communication-Control Codesign for Correlated Dynamical Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><spage>12631</spage><epage>12648</epage><pages>12631-12648</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In this study, we delve into the intricacies of semantic communication-control codesign (CoCoCo) for wireless mixed logical dynamical (MLD) systems operating under signal temporal logic (STL) specifications. Our novel contribution, the MLD-Koopman autoencoder (AE), emerges as a method to linearize the progression of system states within a feature space. This linearization effectively mitigates the communication and computation costs associated with MLD system control. To surmount the challenges posed by multiple correlated MLD systems that possess distinct logical control rules while sharing baseline dynamics, we present the compositional logical dynamical (CLD)-Koopman AE as a remedy to the scalability limitations of the MLD-Koopman AE. This innovative approach incorporates two pivotal models-the dynamics semantic Koopman (DSK) model, capturing semantic correlations among MLD systems, and the logical semantic Koopman (LSK) model, encoding logical control rules. These models portray the linear evolution of baseline dynamics and control rules within a feature space, facilitating predictions of future states for multiple MLD systems with constrained communication. Validation comes from simulations on large-scale inverted cart-pole systems, demonstrating the prowess of the CLD-Koopman AE in achieving an average state prediction performance 82.77% higher than other predictive benchmarks, particularly evident at a signal-to-noise ratio (SNR) of 10 dB.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3337109</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0002-4981-5409</orcidid><orcidid>https://orcid.org/0000-0002-8681-9476</orcidid><orcidid>https://orcid.org/0000-0001-7623-6552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-04, Vol.11 (7), p.12631-12648
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2023_3337109
source IEEE Electronic Library (IEL) Journals
subjects Co-design
Communication
communication-control codesign (CoCoCo)
Control systems
Correlation
Costs
Dynamic scheduling
Dynamical systems
Information sharing
Noise prediction
predictive control
Predictive models
Semantics
signal temporal logic (STL)
Signal to noise ratio
Temporal logic
Vehicle dynamics
title Semantic and Logical Communication-Control Codesign for Correlated Dynamical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20and%20Logical%20Communication-Control%20Codesign%20for%20Correlated%20Dynamical%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Girgis,%20Abanoub%20M.&rft.date=2024-04-01&rft.volume=11&rft.issue=7&rft.spage=12631&rft.epage=12648&rft.pages=12631-12648&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3337109&rft_dat=%3Cproquest_cross%3E2995147412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-39a11692416d698929f728da034ad1de80a03cec4059fe4f89be689a31961a3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2995147412&rft_id=info:pmid/&rft_ieee_id=10330567&rfr_iscdi=true