Loading…

Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks

Fast data aggregation is crucial for facilitating critical Internet of Things services as it enables the collection of sensory data within strict volume and time constraints. Over the past decades, the data aggregation scheduling problem for minimum latency has garnered significant research attentio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2024-04, Vol.11 (8), p.13199-13216
Main Authors: Vo, Van-Vi, Le, Duc-Tai, Raza, Syed M., Kim, Moonseong, Choo, Hyunseung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-2b55ef83e870d4efb18cd57230f0cd42d5f4f201ffeecaea7912235d51bbe51e3
container_end_page 13216
container_issue 8
container_start_page 13199
container_title IEEE internet of things journal
container_volume 11
creator Vo, Van-Vi
Le, Duc-Tai
Raza, Syed M.
Kim, Moonseong
Choo, Hyunseung
description Fast data aggregation is crucial for facilitating critical Internet of Things services as it enables the collection of sensory data within strict volume and time constraints. Over the past decades, the data aggregation scheduling problem for minimum latency has garnered significant research attention. Existing approaches to this problem typically schedule all data transmissions based on an aggregation tree, which is constructed without secondary interference. However, such interference can introduce delays when scheduling a transmission from a node to its parent in the tree. To this end, this study proposes an approach called active neighbor exploitation (ANEX) that enables sensor nodes to switch their parents by identifying active neighbors for potential connectivity, irrespective of the receivers established in the tree. Additionally, the scheme prioritizes scheduling nodes with the fewest unscheduled active neighbors, thereby allowing for more concurrent transmissions. ANEX is evaluated through theoretical analysis and extensive simulations under various scenarios. The results demonstrate that ANEX achieves up to 86% faster aggregation compared to the state-of-the-art approach while maintaining an equivalent time complexity.
doi_str_mv 10.1109/JIOT.2024.3354730
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JIOT_2024_3354730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400786</ieee_id><sourcerecordid>3035273601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2b55ef83e870d4efb18cd57230f0cd42d5f4f201ffeecaea7912235d51bbe51e3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGEwnyA0w8NPFcnP1qy5EgIAbhIJ4323a2FrGLu4sf_96ScuA0k5nnnUkeQm4pDCmF0cPzYr0ZMmBiyLkUKYcL0mOcpbFIEnZ51l-TgfdbAGhjko6SHnkZF6H-xmiFdfWeWxdNf_c7WwcdattEph3MtA_Row46GleVw6rb1E20sJvoFRvfMisMP9Z9-BtyZfTO4-BU--RtNt1MnuLler6YjJdxwUQSYpZLiSbjmKVQCjQ5zYpSpoyDgaIUrJRGGAbUGMRCo05HlDEuS0nzHCVF3if33d29s18H9EFt7cE17UvFgUuW8gRoS9GOKpz13qFRe1d_avenKKijOHUUp47i1Elcm7nrMjUinvECIM0S_g_iDmlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035273601</pqid></control><display><type>article</type><title>Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks</title><source>IEEE Xplore (Online service)</source><creator>Vo, Van-Vi ; Le, Duc-Tai ; Raza, Syed M. ; Kim, Moonseong ; Choo, Hyunseung</creator><creatorcontrib>Vo, Van-Vi ; Le, Duc-Tai ; Raza, Syed M. ; Kim, Moonseong ; Choo, Hyunseung</creatorcontrib><description>Fast data aggregation is crucial for facilitating critical Internet of Things services as it enables the collection of sensory data within strict volume and time constraints. Over the past decades, the data aggregation scheduling problem for minimum latency has garnered significant research attention. Existing approaches to this problem typically schedule all data transmissions based on an aggregation tree, which is constructed without secondary interference. However, such interference can introduce delays when scheduling a transmission from a node to its parent in the tree. To this end, this study proposes an approach called active neighbor exploitation (ANEX) that enables sensor nodes to switch their parents by identifying active neighbors for potential connectivity, irrespective of the receivers established in the tree. Additionally, the scheme prioritizes scheduling nodes with the fewest unscheduled active neighbors, thereby allowing for more concurrent transmissions. ANEX is evaluated through theoretical analysis and extensive simulations under various scenarios. The results demonstrate that ANEX achieves up to 86% faster aggregation compared to the state-of-the-art approach while maintaining an equivalent time complexity.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3354730</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coloring method ; Data aggregation ; Data management ; Data transmission ; Delays ; duty cycle ; Dynamic scheduling ; Exploitation ; Interference ; Internet of Things ; Internet of Things (IoT) ; multichannel ; Network latency ; Nodes ; Optimal scheduling ; Receivers ; Schedules ; Scheduling ; wireless sensor networks (WSNs)</subject><ispartof>IEEE internet of things journal, 2024-04, Vol.11 (8), p.13199-13216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2b55ef83e870d4efb18cd57230f0cd42d5f4f201ffeecaea7912235d51bbe51e3</cites><orcidid>0000-0002-5286-6629 ; 0000-0002-5745-4164 ; 0000-0003-2692-6883 ; 0000-0001-6580-3232 ; 0000-0002-6485-3155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vo, Van-Vi</creatorcontrib><creatorcontrib>Le, Duc-Tai</creatorcontrib><creatorcontrib>Raza, Syed M.</creatorcontrib><creatorcontrib>Kim, Moonseong</creatorcontrib><creatorcontrib>Choo, Hyunseung</creatorcontrib><title>Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Fast data aggregation is crucial for facilitating critical Internet of Things services as it enables the collection of sensory data within strict volume and time constraints. Over the past decades, the data aggregation scheduling problem for minimum latency has garnered significant research attention. Existing approaches to this problem typically schedule all data transmissions based on an aggregation tree, which is constructed without secondary interference. However, such interference can introduce delays when scheduling a transmission from a node to its parent in the tree. To this end, this study proposes an approach called active neighbor exploitation (ANEX) that enables sensor nodes to switch their parents by identifying active neighbors for potential connectivity, irrespective of the receivers established in the tree. Additionally, the scheme prioritizes scheduling nodes with the fewest unscheduled active neighbors, thereby allowing for more concurrent transmissions. ANEX is evaluated through theoretical analysis and extensive simulations under various scenarios. The results demonstrate that ANEX achieves up to 86% faster aggregation compared to the state-of-the-art approach while maintaining an equivalent time complexity.</description><subject>Coloring method</subject><subject>Data aggregation</subject><subject>Data management</subject><subject>Data transmission</subject><subject>Delays</subject><subject>duty cycle</subject><subject>Dynamic scheduling</subject><subject>Exploitation</subject><subject>Interference</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>multichannel</subject><subject>Network latency</subject><subject>Nodes</subject><subject>Optimal scheduling</subject><subject>Receivers</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>wireless sensor networks (WSNs)</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAQhjdGEwnyA0w8NPFcnP1qy5EgIAbhIJ4323a2FrGLu4sf_96ScuA0k5nnnUkeQm4pDCmF0cPzYr0ZMmBiyLkUKYcL0mOcpbFIEnZ51l-TgfdbAGhjko6SHnkZF6H-xmiFdfWeWxdNf_c7WwcdattEph3MtA_Row46GleVw6rb1E20sJvoFRvfMisMP9Z9-BtyZfTO4-BU--RtNt1MnuLler6YjJdxwUQSYpZLiSbjmKVQCjQ5zYpSpoyDgaIUrJRGGAbUGMRCo05HlDEuS0nzHCVF3if33d29s18H9EFt7cE17UvFgUuW8gRoS9GOKpz13qFRe1d_avenKKijOHUUp47i1Elcm7nrMjUinvECIM0S_g_iDmlg</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Vo, Van-Vi</creator><creator>Le, Duc-Tai</creator><creator>Raza, Syed M.</creator><creator>Kim, Moonseong</creator><creator>Choo, Hyunseung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5286-6629</orcidid><orcidid>https://orcid.org/0000-0002-5745-4164</orcidid><orcidid>https://orcid.org/0000-0003-2692-6883</orcidid><orcidid>https://orcid.org/0000-0001-6580-3232</orcidid><orcidid>https://orcid.org/0000-0002-6485-3155</orcidid></search><sort><creationdate>20240415</creationdate><title>Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks</title><author>Vo, Van-Vi ; Le, Duc-Tai ; Raza, Syed M. ; Kim, Moonseong ; Choo, Hyunseung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2b55ef83e870d4efb18cd57230f0cd42d5f4f201ffeecaea7912235d51bbe51e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coloring method</topic><topic>Data aggregation</topic><topic>Data management</topic><topic>Data transmission</topic><topic>Delays</topic><topic>duty cycle</topic><topic>Dynamic scheduling</topic><topic>Exploitation</topic><topic>Interference</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>multichannel</topic><topic>Network latency</topic><topic>Nodes</topic><topic>Optimal scheduling</topic><topic>Receivers</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>wireless sensor networks (WSNs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vo, Van-Vi</creatorcontrib><creatorcontrib>Le, Duc-Tai</creatorcontrib><creatorcontrib>Raza, Syed M.</creatorcontrib><creatorcontrib>Kim, Moonseong</creatorcontrib><creatorcontrib>Choo, Hyunseung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Van-Vi</au><au>Le, Duc-Tai</au><au>Raza, Syed M.</au><au>Kim, Moonseong</au><au>Choo, Hyunseung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>13199</spage><epage>13216</epage><pages>13199-13216</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Fast data aggregation is crucial for facilitating critical Internet of Things services as it enables the collection of sensory data within strict volume and time constraints. Over the past decades, the data aggregation scheduling problem for minimum latency has garnered significant research attention. Existing approaches to this problem typically schedule all data transmissions based on an aggregation tree, which is constructed without secondary interference. However, such interference can introduce delays when scheduling a transmission from a node to its parent in the tree. To this end, this study proposes an approach called active neighbor exploitation (ANEX) that enables sensor nodes to switch their parents by identifying active neighbors for potential connectivity, irrespective of the receivers established in the tree. Additionally, the scheme prioritizes scheduling nodes with the fewest unscheduled active neighbors, thereby allowing for more concurrent transmissions. ANEX is evaluated through theoretical analysis and extensive simulations under various scenarios. The results demonstrate that ANEX achieves up to 86% faster aggregation compared to the state-of-the-art approach while maintaining an equivalent time complexity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3354730</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5286-6629</orcidid><orcidid>https://orcid.org/0000-0002-5745-4164</orcidid><orcidid>https://orcid.org/0000-0003-2692-6883</orcidid><orcidid>https://orcid.org/0000-0001-6580-3232</orcidid><orcidid>https://orcid.org/0000-0002-6485-3155</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-04, Vol.11 (8), p.13199-13216
issn 2327-4662
2327-4662
language eng
recordid cdi_crossref_primary_10_1109_JIOT_2024_3354730
source IEEE Xplore (Online service)
subjects Coloring method
Data aggregation
Data management
Data transmission
Delays
duty cycle
Dynamic scheduling
Exploitation
Interference
Internet of Things
Internet of Things (IoT)
multichannel
Network latency
Nodes
Optimal scheduling
Receivers
Schedules
Scheduling
wireless sensor networks (WSNs)
title Active Neighbor Exploitation for Fast Data Aggregation in IoT Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Neighbor%20Exploitation%20for%20Fast%20Data%20Aggregation%20in%20IoT%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Vo,%20Van-Vi&rft.date=2024-04-15&rft.volume=11&rft.issue=8&rft.spage=13199&rft.epage=13216&rft.pages=13199-13216&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3354730&rft_dat=%3Cproquest_cross%3E3035273601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-2b55ef83e870d4efb18cd57230f0cd42d5f4f201ffeecaea7912235d51bbe51e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035273601&rft_id=info:pmid/&rft_ieee_id=10400786&rfr_iscdi=true