Loading…
Tunable Radio Frequency Generation Using a Graphene-Based Single Longitudinal Mode Fiber Laser
A novel, simple, and short cavity design of single longitudinal mode (SLM) tunable erbium-doped fiber ring laser using a graphene-based saturable absorber is proposed and demonstrated as a tunable signal source. The SLM output is then mixed with another output signal from a tunable laser source (TLS...
Saved in:
Published in: | Journal of lightwave technology 2012-07, Vol.30 (13), p.2097-2102 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel, simple, and short cavity design of single longitudinal mode (SLM) tunable erbium-doped fiber ring laser using a graphene-based saturable absorber is proposed and demonstrated as a tunable signal source. The SLM output is then mixed with another output signal from a tunable laser source (TLS) to generate tunable radio frequency (RF) signals. The tunable SLM fiber ring laser uses a short length of 1 m highly doped erbium-doped fiber as the gain medium. Graphene is used as a saturable absorber to generate the SLM operation, as opposed to the commonly used unpumped erbium-doped fiber. The tuning range of the fiber ring laser is determined by a tunable fiber Bragg grating, which can be tuned from 1547.88 to 1559.88 nm. A continuous wavelength spacing tuning range of 0.020-0.050 nm is obtained between the output of the SLM fiber ring laser and the TLS which is then mixed in a 6 GHz bandwidth optical-to-electrical convertor. This generates a corresponding RF signal of between 2.4 and 5.9 GHz with a low variation in output power. The current RF signal generation is limited by the frequency bandwidth of the optical-to-electrical convertor. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2012.2192099 |