Loading…

Study of 100 Gigabit Ethernet Using Carrierless Amplitude/Phase Modulation and Optical OFDM

For the first time, simulations have been performed to evaluate and compare the link power budget and power dissipation of 100 Gb/s carrierless amplitude and phase modulation-16/64 (CAP-16/64) and 16/64-quadrature amplitude modulation-orthogonal frequency division multiplexing (16/64-QAM-OFDM) syste...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2013-05, Vol.31 (9), p.1367-1373
Main Authors: Wei, J. L., Cunningham, D. G., Penty, R. V., White, I. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the first time, simulations have been performed to evaluate and compare the link power budget and power dissipation of 100 Gb/s carrierless amplitude and phase modulation-16/64 (CAP-16/64) and 16/64-quadrature amplitude modulation-orthogonal frequency division multiplexing (16/64-QAM-OFDM) systems over feedforward error correction (FEC) enhanced single mode fiber (SMF) links using an 18.6 GHz bandwidth directly modulated laser, for both single channel and two coarse wavelength division multiplexing (CWDM) channel cases. It is shown that single channel CAP-16 and 16-QAM-OFDM links can successfully support transmission over 5 km SMF, with a power dissipation of ~ 2 times that of a 4 Ă— 25 Gb/s NRZ system. Even when the loss of the optical multiplexing/demultiplexing operations is considered, the use of two CWDM channels supports transmission over 5 km SMF with CAP-16 and 16-QAM-OFDM. The CWDM systems do not increase transceiver power dissipation greatly.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2013.2248122