Loading…

Cryogenic Temperature Response of Reflection-Based Phase-Shifted Long-Period Fiber Gratings

In this study, we investigated the temperature behavior of phase-shifted long-period fiber gratings (PS-LPFGs) inscribed in two types of optical fiber: B/Ge and SMF28. The experiments were carried out from 5 to 305 K using a superconducting quantum interference device magnetometer. The average tempe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2015-06, Vol.33 (12), p.2511-2517
Main Authors: Martins, Raquel, Caldas, Paulo, Teixeira, Bruno, Azevedo, Joao, Monteiro, Jose, Belo, Joao H., Araujo, Joao P., Santos, Jose L., Rego, Gaspar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983
cites cdi_FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983
container_end_page 2517
container_issue 12
container_start_page 2511
container_title Journal of lightwave technology
container_volume 33
creator Martins, Raquel
Caldas, Paulo
Teixeira, Bruno
Azevedo, Joao
Monteiro, Jose
Belo, Joao H.
Araujo, Joao P.
Santos, Jose L.
Rego, Gaspar
description In this study, we investigated the temperature behavior of phase-shifted long-period fiber gratings (PS-LPFGs) inscribed in two types of optical fiber: B/Ge and SMF28. The experiments were carried out from 5 to 305 K using a superconducting quantum interference device magnetometer. The average temperature sensitivity obtained of -0.43 nm/K for PS-LPFGs inscribed in the B/Ge fiber is one order of magnitude larger than for PS-LPFGs inscribed in the SMF28 fiber, in the 60-240 K range. Values ranging from -0.08 nm/K up to 0.2 nm/K were obtained in the 5-35 K temperature range, which are considerably better than previous results achieved for metal-coated FBGs and also for LPFGs inscribed in a similar B/Ge codoped fiber. Nevertheless, further work is required in order to correctly address sensor reliability.
doi_str_mv 10.1109/JLT.2014.2381236
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2014_2381236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6985579</ieee_id><sourcerecordid>3719672951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983</originalsourceid><addsrcrecordid>eNpdkM1LAzEUxIMoWKt3wcuCFy9b873JUYutSsGi9eQhZHfftinbTU22h_73plQ8eJr34DfDMAhdEzwiBOv719liRDHhI8oUoUyeoAERQuWUEnaKBrhgLFcF5efoIsY1TiRXxQB9jcPeL6FzVbaAzRaC7XcBsneIW99FyHyT7qaFqne-yx9thDqbr5LkHyvX9Omb-W6ZzyE4X2cTV0LIpinEdct4ic4a20a4-tUh-pw8LcbP-ext-jJ-mOUVk7LPq1pDaStV2lRVacVtqaQtmRWMcaax1JI0WFACnGMiFWG0KbigNSFl2WjFhujumLsN_nsHsTcbFytoW9uB30VDFBVCioLShN7-Q9d-F7rUzqRkrTDmQicKH6kq-BgDNGYb3MaGvSHYHNY2aW1zWNv8rp0sN0eLA4A_XGolRKHZD-WEeac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689800459</pqid></control><display><type>article</type><title>Cryogenic Temperature Response of Reflection-Based Phase-Shifted Long-Period Fiber Gratings</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Martins, Raquel ; Caldas, Paulo ; Teixeira, Bruno ; Azevedo, Joao ; Monteiro, Jose ; Belo, Joao H. ; Araujo, Joao P. ; Santos, Jose L. ; Rego, Gaspar</creator><creatorcontrib>Martins, Raquel ; Caldas, Paulo ; Teixeira, Bruno ; Azevedo, Joao ; Monteiro, Jose ; Belo, Joao H. ; Araujo, Joao P. ; Santos, Jose L. ; Rego, Gaspar</creatorcontrib><description>In this study, we investigated the temperature behavior of phase-shifted long-period fiber gratings (PS-LPFGs) inscribed in two types of optical fiber: B/Ge and SMF28. The experiments were carried out from 5 to 305 K using a superconducting quantum interference device magnetometer. The average temperature sensitivity obtained of -0.43 nm/K for PS-LPFGs inscribed in the B/Ge fiber is one order of magnitude larger than for PS-LPFGs inscribed in the SMF28 fiber, in the 60-240 K range. Values ranging from -0.08 nm/K up to 0.2 nm/K were obtained in the 5-35 K temperature range, which are considerably better than previous results achieved for metal-coated FBGs and also for LPFGs inscribed in a similar B/Ge codoped fiber. Nevertheless, further work is required in order to correctly address sensor reliability.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2014.2381236</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Climate ; Cryogenic temperature ; cryogenic temperatures ; Cryogenics ; Diffraction gratings ; Fiber gratings ; Fibers ; Germanium ; Gratings (spectra) ; Long-period fiber grating ; optical fiber sensor ; Optical fiber sensors ; Optical fibers ; Reflection ; Sensitivity ; SQUIDs ; Temperature sensors</subject><ispartof>Journal of lightwave technology, 2015-06, Vol.33 (12), p.2511-2517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983</citedby><cites>FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983</cites><orcidid>0000-0001-8807-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6985579$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Martins, Raquel</creatorcontrib><creatorcontrib>Caldas, Paulo</creatorcontrib><creatorcontrib>Teixeira, Bruno</creatorcontrib><creatorcontrib>Azevedo, Joao</creatorcontrib><creatorcontrib>Monteiro, Jose</creatorcontrib><creatorcontrib>Belo, Joao H.</creatorcontrib><creatorcontrib>Araujo, Joao P.</creatorcontrib><creatorcontrib>Santos, Jose L.</creatorcontrib><creatorcontrib>Rego, Gaspar</creatorcontrib><title>Cryogenic Temperature Response of Reflection-Based Phase-Shifted Long-Period Fiber Gratings</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this study, we investigated the temperature behavior of phase-shifted long-period fiber gratings (PS-LPFGs) inscribed in two types of optical fiber: B/Ge and SMF28. The experiments were carried out from 5 to 305 K using a superconducting quantum interference device magnetometer. The average temperature sensitivity obtained of -0.43 nm/K for PS-LPFGs inscribed in the B/Ge fiber is one order of magnitude larger than for PS-LPFGs inscribed in the SMF28 fiber, in the 60-240 K range. Values ranging from -0.08 nm/K up to 0.2 nm/K were obtained in the 5-35 K temperature range, which are considerably better than previous results achieved for metal-coated FBGs and also for LPFGs inscribed in a similar B/Ge codoped fiber. Nevertheless, further work is required in order to correctly address sensor reliability.</description><subject>Climate</subject><subject>Cryogenic temperature</subject><subject>cryogenic temperatures</subject><subject>Cryogenics</subject><subject>Diffraction gratings</subject><subject>Fiber gratings</subject><subject>Fibers</subject><subject>Germanium</subject><subject>Gratings (spectra)</subject><subject>Long-period fiber grating</subject><subject>optical fiber sensor</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Reflection</subject><subject>Sensitivity</subject><subject>SQUIDs</subject><subject>Temperature sensors</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEUxIMoWKt3wcuCFy9b873JUYutSsGi9eQhZHfftinbTU22h_73plQ8eJr34DfDMAhdEzwiBOv719liRDHhI8oUoUyeoAERQuWUEnaKBrhgLFcF5efoIsY1TiRXxQB9jcPeL6FzVbaAzRaC7XcBsneIW99FyHyT7qaFqne-yx9thDqbr5LkHyvX9Omb-W6ZzyE4X2cTV0LIpinEdct4ic4a20a4-tUh-pw8LcbP-ext-jJ-mOUVk7LPq1pDaStV2lRVacVtqaQtmRWMcaax1JI0WFACnGMiFWG0KbigNSFl2WjFhujumLsN_nsHsTcbFytoW9uB30VDFBVCioLShN7-Q9d-F7rUzqRkrTDmQicKH6kq-BgDNGYb3MaGvSHYHNY2aW1zWNv8rp0sN0eLA4A_XGolRKHZD-WEeac</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Martins, Raquel</creator><creator>Caldas, Paulo</creator><creator>Teixeira, Bruno</creator><creator>Azevedo, Joao</creator><creator>Monteiro, Jose</creator><creator>Belo, Joao H.</creator><creator>Araujo, Joao P.</creator><creator>Santos, Jose L.</creator><creator>Rego, Gaspar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8807-4108</orcidid></search><sort><creationdate>20150615</creationdate><title>Cryogenic Temperature Response of Reflection-Based Phase-Shifted Long-Period Fiber Gratings</title><author>Martins, Raquel ; Caldas, Paulo ; Teixeira, Bruno ; Azevedo, Joao ; Monteiro, Jose ; Belo, Joao H. ; Araujo, Joao P. ; Santos, Jose L. ; Rego, Gaspar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Climate</topic><topic>Cryogenic temperature</topic><topic>cryogenic temperatures</topic><topic>Cryogenics</topic><topic>Diffraction gratings</topic><topic>Fiber gratings</topic><topic>Fibers</topic><topic>Germanium</topic><topic>Gratings (spectra)</topic><topic>Long-period fiber grating</topic><topic>optical fiber sensor</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Reflection</topic><topic>Sensitivity</topic><topic>SQUIDs</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Raquel</creatorcontrib><creatorcontrib>Caldas, Paulo</creatorcontrib><creatorcontrib>Teixeira, Bruno</creatorcontrib><creatorcontrib>Azevedo, Joao</creatorcontrib><creatorcontrib>Monteiro, Jose</creatorcontrib><creatorcontrib>Belo, Joao H.</creatorcontrib><creatorcontrib>Araujo, Joao P.</creatorcontrib><creatorcontrib>Santos, Jose L.</creatorcontrib><creatorcontrib>Rego, Gaspar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Raquel</au><au>Caldas, Paulo</au><au>Teixeira, Bruno</au><au>Azevedo, Joao</au><au>Monteiro, Jose</au><au>Belo, Joao H.</au><au>Araujo, Joao P.</au><au>Santos, Jose L.</au><au>Rego, Gaspar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Temperature Response of Reflection-Based Phase-Shifted Long-Period Fiber Gratings</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2015-06-15</date><risdate>2015</risdate><volume>33</volume><issue>12</issue><spage>2511</spage><epage>2517</epage><pages>2511-2517</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this study, we investigated the temperature behavior of phase-shifted long-period fiber gratings (PS-LPFGs) inscribed in two types of optical fiber: B/Ge and SMF28. The experiments were carried out from 5 to 305 K using a superconducting quantum interference device magnetometer. The average temperature sensitivity obtained of -0.43 nm/K for PS-LPFGs inscribed in the B/Ge fiber is one order of magnitude larger than for PS-LPFGs inscribed in the SMF28 fiber, in the 60-240 K range. Values ranging from -0.08 nm/K up to 0.2 nm/K were obtained in the 5-35 K temperature range, which are considerably better than previous results achieved for metal-coated FBGs and also for LPFGs inscribed in a similar B/Ge codoped fiber. Nevertheless, further work is required in order to correctly address sensor reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2014.2381236</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8807-4108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2015-06, Vol.33 (12), p.2511-2517
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2014_2381236
source IEEE Electronic Library (IEL) Journals
subjects Climate
Cryogenic temperature
cryogenic temperatures
Cryogenics
Diffraction gratings
Fiber gratings
Fibers
Germanium
Gratings (spectra)
Long-period fiber grating
optical fiber sensor
Optical fiber sensors
Optical fibers
Reflection
Sensitivity
SQUIDs
Temperature sensors
title Cryogenic Temperature Response of Reflection-Based Phase-Shifted Long-Period Fiber Gratings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Temperature%20Response%20of%20Reflection-Based%20Phase-Shifted%20Long-Period%20Fiber%20Gratings&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Martins,%20Raquel&rft.date=2015-06-15&rft.volume=33&rft.issue=12&rft.spage=2511&rft.epage=2517&rft.pages=2511-2517&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2014.2381236&rft_dat=%3Cproquest_cross%3E3719672951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-cd9ebac8ba2138984ab86ab3a53343906961f0521e440168132f7452d11bbf983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1689800459&rft_id=info:pmid/&rft_ieee_id=6985579&rfr_iscdi=true