Loading…
High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region
The 2-μm wave band is emerging as a potential new window for optical telecommunications with several distinct advantages over the traditional 1.55 μm region. First of all, the hollow-core photonic band gap fiber (HC-PBGF) is an emerging transmission fiber candidate with ultra-low nonlinearity and lo...
Saved in:
Published in: | Journal of lightwave technology 2015-04, Vol.33 (7), p.1373-1379 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 2-μm wave band is emerging as a potential new window for optical telecommunications with several distinct advantages over the traditional 1.55 μm region. First of all, the hollow-core photonic band gap fiber (HC-PBGF) is an emerging transmission fiber candidate with ultra-low nonlinearity and lowest latency (0.3% slower than light propagating in vacuum) that has its minimum loss within the 2-μm wavelength band. Second, the thulium-doped fiber amplifier that operates in this spectral region provides significantly more bandwidth than the erbium-doped fiber amplifier. In this paper, we demonstrate a single-channel 2-μm transmitter capable of delivering >52 Gbit/s data signals, which is twice the capacity previously demonstrated. To achieve this, we employ discrete multitone modulation via direct current modulation of a Fabry-Perot semiconductor laser. The 4.4-GHz modulation bandwidth of the laser is enhanced by optical injection locking, providing up to 11 GHz modulation bandwidth. Transmission over 500-m and 3.8-km samples of HC-PBGF is demonstrated. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2015.2397700 |