Loading…

Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR

Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2016-02, Vol.34 (4), p.1184-1190
Main Authors: Krishnamurthy, Vivek, Keh Ting Ng, Doris, Cen, Zhanhong, Xu, Baoxi, Wang, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3
cites cdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3
container_end_page 1190
container_issue 4
container_start_page 1184
container_title Journal of lightwave technology
container_volume 34
creator Krishnamurthy, Vivek
Keh Ting Ng, Doris
Cen, Zhanhong
Xu, Baoxi
Wang, Qian
description Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.
doi_str_mv 10.1109/JLT.2015.2500366
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2015_2500366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7328246</ieee_id><sourcerecordid>4047564201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wUvAi5et-dpkeyyltZXWitRzSLMTTdnu1mQL1l9vSosHYeA9zPMOw4PQLSU9Skn_8Xm27DFC8x7LCeFSnqEOzfMiY4zyc9QhivOsUExcoqsY14RQIQrVQYu5-fYb_-PrD9x-An6tTNw0tbf4BUzIxh6qEi-DqWO5sxDwyDlvPdR2j9sGT9uIZ6neYtcEPBnM367RhTNVhJtTdtH7eLQcTrLZ4mk6HMwyy5loM-MoSMmY7TsQpABqjSqFoCuSl5BLznlaAXWyX0ghlHWuXKnSMBBKpil5Fz0c725D87WD2OqNjxaqytTQ7KKmBZVE9AUvEnr_D103u1Cn7zRVSQmnSVeiyJGyoYkxgNPb4Dcm7DUl-mBYJ8P6YFifDKfK3bHiAeAPV5wVTEj-CwVedVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787231366</pqid></control><display><type>article</type><title>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Krishnamurthy, Vivek ; Keh Ting Ng, Doris ; Cen, Zhanhong ; Xu, Baoxi ; Wang, Qian</creator><creatorcontrib>Krishnamurthy, Vivek ; Keh Ting Ng, Doris ; Cen, Zhanhong ; Xu, Baoxi ; Wang, Qian</creatorcontrib><description>Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2015.2500366</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetry ; Benchmark testing ; Efficiency ; heat-assisted magnetic recording (HAMR) ; Impedance matching ; Magnetic tape ; Media ; Metals ; NFT efficiency ; Optical reflection ; Optical waveguides ; plasmonic near-field transducer ; Plasmonics ; Plasmons ; Power transfer ; Transducers ; Waveguides ; Wavelengths</subject><ispartof>Journal of lightwave technology, 2016-02, Vol.34 (4), p.1184-1190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</citedby><cites>FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7328246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Krishnamurthy, Vivek</creatorcontrib><creatorcontrib>Keh Ting Ng, Doris</creatorcontrib><creatorcontrib>Cen, Zhanhong</creatorcontrib><creatorcontrib>Xu, Baoxi</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.</description><subject>Asymmetry</subject><subject>Benchmark testing</subject><subject>Efficiency</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>Impedance matching</subject><subject>Magnetic tape</subject><subject>Media</subject><subject>Metals</subject><subject>NFT efficiency</subject><subject>Optical reflection</subject><subject>Optical waveguides</subject><subject>plasmonic near-field transducer</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Power transfer</subject><subject>Transducers</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wUvAi5et-dpkeyyltZXWitRzSLMTTdnu1mQL1l9vSosHYeA9zPMOw4PQLSU9Skn_8Xm27DFC8x7LCeFSnqEOzfMiY4zyc9QhivOsUExcoqsY14RQIQrVQYu5-fYb_-PrD9x-An6tTNw0tbf4BUzIxh6qEi-DqWO5sxDwyDlvPdR2j9sGT9uIZ6neYtcEPBnM367RhTNVhJtTdtH7eLQcTrLZ4mk6HMwyy5loM-MoSMmY7TsQpABqjSqFoCuSl5BLznlaAXWyX0ghlHWuXKnSMBBKpil5Fz0c725D87WD2OqNjxaqytTQ7KKmBZVE9AUvEnr_D103u1Cn7zRVSQmnSVeiyJGyoYkxgNPb4Dcm7DUl-mBYJ8P6YFifDKfK3bHiAeAPV5wVTEj-CwVedVo</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Krishnamurthy, Vivek</creator><creator>Keh Ting Ng, Doris</creator><creator>Cen, Zhanhong</creator><creator>Xu, Baoxi</creator><creator>Wang, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160215</creationdate><title>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</title><author>Krishnamurthy, Vivek ; Keh Ting Ng, Doris ; Cen, Zhanhong ; Xu, Baoxi ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Benchmark testing</topic><topic>Efficiency</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>Impedance matching</topic><topic>Magnetic tape</topic><topic>Media</topic><topic>Metals</topic><topic>NFT efficiency</topic><topic>Optical reflection</topic><topic>Optical waveguides</topic><topic>plasmonic near-field transducer</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Power transfer</topic><topic>Transducers</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, Vivek</creatorcontrib><creatorcontrib>Keh Ting Ng, Doris</creatorcontrib><creatorcontrib>Cen, Zhanhong</creatorcontrib><creatorcontrib>Xu, Baoxi</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamurthy, Vivek</au><au>Keh Ting Ng, Doris</au><au>Cen, Zhanhong</au><au>Xu, Baoxi</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2016-02-15</date><risdate>2016</risdate><volume>34</volume><issue>4</issue><spage>1184</spage><epage>1190</epage><pages>1184-1190</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2015.2500366</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2016-02, Vol.34 (4), p.1184-1190
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2015_2500366
source IEEE Electronic Library (IEL) Journals
subjects Asymmetry
Benchmark testing
Efficiency
heat-assisted magnetic recording (HAMR)
Impedance matching
Magnetic tape
Media
Metals
NFT efficiency
Optical reflection
Optical waveguides
plasmonic near-field transducer
Plasmonics
Plasmons
Power transfer
Transducers
Waveguides
Wavelengths
title Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20Plasmonic%20Near-Field%20Transducer%20Efficiency%20to%20Its%20Limit%20for%20HAMR&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Krishnamurthy,%20Vivek&rft.date=2016-02-15&rft.volume=34&rft.issue=4&rft.spage=1184&rft.epage=1190&rft.pages=1184-1190&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2015.2500366&rft_dat=%3Cproquest_cross%3E4047564201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787231366&rft_id=info:pmid/&rft_ieee_id=7328246&rfr_iscdi=true