Loading…
Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR
Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, w...
Saved in:
Published in: | Journal of lightwave technology 2016-02, Vol.34 (4), p.1184-1190 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3 |
container_end_page | 1190 |
container_issue | 4 |
container_start_page | 1184 |
container_title | Journal of lightwave technology |
container_volume | 34 |
creator | Krishnamurthy, Vivek Keh Ting Ng, Doris Cen, Zhanhong Xu, Baoxi Wang, Qian |
description | Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range. |
doi_str_mv | 10.1109/JLT.2015.2500366 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2015_2500366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7328246</ieee_id><sourcerecordid>4047564201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wUvAi5et-dpkeyyltZXWitRzSLMTTdnu1mQL1l9vSosHYeA9zPMOw4PQLSU9Skn_8Xm27DFC8x7LCeFSnqEOzfMiY4zyc9QhivOsUExcoqsY14RQIQrVQYu5-fYb_-PrD9x-An6tTNw0tbf4BUzIxh6qEi-DqWO5sxDwyDlvPdR2j9sGT9uIZ6neYtcEPBnM367RhTNVhJtTdtH7eLQcTrLZ4mk6HMwyy5loM-MoSMmY7TsQpABqjSqFoCuSl5BLznlaAXWyX0ghlHWuXKnSMBBKpil5Fz0c725D87WD2OqNjxaqytTQ7KKmBZVE9AUvEnr_D103u1Cn7zRVSQmnSVeiyJGyoYkxgNPb4Dcm7DUl-mBYJ8P6YFifDKfK3bHiAeAPV5wVTEj-CwVedVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787231366</pqid></control><display><type>article</type><title>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Krishnamurthy, Vivek ; Keh Ting Ng, Doris ; Cen, Zhanhong ; Xu, Baoxi ; Wang, Qian</creator><creatorcontrib>Krishnamurthy, Vivek ; Keh Ting Ng, Doris ; Cen, Zhanhong ; Xu, Baoxi ; Wang, Qian</creatorcontrib><description>Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2015.2500366</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetry ; Benchmark testing ; Efficiency ; heat-assisted magnetic recording (HAMR) ; Impedance matching ; Magnetic tape ; Media ; Metals ; NFT efficiency ; Optical reflection ; Optical waveguides ; plasmonic near-field transducer ; Plasmonics ; Plasmons ; Power transfer ; Transducers ; Waveguides ; Wavelengths</subject><ispartof>Journal of lightwave technology, 2016-02, Vol.34 (4), p.1184-1190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</citedby><cites>FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7328246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Krishnamurthy, Vivek</creatorcontrib><creatorcontrib>Keh Ting Ng, Doris</creatorcontrib><creatorcontrib>Cen, Zhanhong</creatorcontrib><creatorcontrib>Xu, Baoxi</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.</description><subject>Asymmetry</subject><subject>Benchmark testing</subject><subject>Efficiency</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>Impedance matching</subject><subject>Magnetic tape</subject><subject>Media</subject><subject>Metals</subject><subject>NFT efficiency</subject><subject>Optical reflection</subject><subject>Optical waveguides</subject><subject>plasmonic near-field transducer</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Power transfer</subject><subject>Transducers</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wUvAi5et-dpkeyyltZXWitRzSLMTTdnu1mQL1l9vSosHYeA9zPMOw4PQLSU9Skn_8Xm27DFC8x7LCeFSnqEOzfMiY4zyc9QhivOsUExcoqsY14RQIQrVQYu5-fYb_-PrD9x-An6tTNw0tbf4BUzIxh6qEi-DqWO5sxDwyDlvPdR2j9sGT9uIZ6neYtcEPBnM367RhTNVhJtTdtH7eLQcTrLZ4mk6HMwyy5loM-MoSMmY7TsQpABqjSqFoCuSl5BLznlaAXWyX0ghlHWuXKnSMBBKpil5Fz0c725D87WD2OqNjxaqytTQ7KKmBZVE9AUvEnr_D103u1Cn7zRVSQmnSVeiyJGyoYkxgNPb4Dcm7DUl-mBYJ8P6YFifDKfK3bHiAeAPV5wVTEj-CwVedVo</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Krishnamurthy, Vivek</creator><creator>Keh Ting Ng, Doris</creator><creator>Cen, Zhanhong</creator><creator>Xu, Baoxi</creator><creator>Wang, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160215</creationdate><title>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</title><author>Krishnamurthy, Vivek ; Keh Ting Ng, Doris ; Cen, Zhanhong ; Xu, Baoxi ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymmetry</topic><topic>Benchmark testing</topic><topic>Efficiency</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>Impedance matching</topic><topic>Magnetic tape</topic><topic>Media</topic><topic>Metals</topic><topic>NFT efficiency</topic><topic>Optical reflection</topic><topic>Optical waveguides</topic><topic>plasmonic near-field transducer</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Power transfer</topic><topic>Transducers</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, Vivek</creatorcontrib><creatorcontrib>Keh Ting Ng, Doris</creatorcontrib><creatorcontrib>Cen, Zhanhong</creatorcontrib><creatorcontrib>Xu, Baoxi</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamurthy, Vivek</au><au>Keh Ting Ng, Doris</au><au>Cen, Zhanhong</au><au>Xu, Baoxi</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2016-02-15</date><risdate>2016</risdate><volume>34</volume><issue>4</issue><spage>1184</spage><epage>1190</epage><pages>1184-1190</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Plasmonic near-field transducer (NFT) facilitates optical power transfer into a nano-spot in the recording media for heat-assisted magnetic recording. Typically, impedance matching is a condition for maximum power transfer between a given source and load. Even for waveguide-NFT-media stack system, we verify that matching the impedances of waveguide and media-stack at NFT resonance maximizes power transfer. However, it is not a sufficient condition. Since, NFT guides the light into the media-stack as symmetric and asymmetric optical modes, higher conversion of dielectric mode into a mode that exhibits maximum coupling into the media is the second condition for maximizing the power transfer into the media. In this study, operating wavelength range, material refractive indices, and NFT geometrical parameters are considered in the design space for maximizing the efficiency of an exemplary taper-based NFT structure. We first estimate the maximum efficiency and compare with the benchmark efficiency of "ideal" version of the considered NFT to confirm that the obtained efficiency is maximum. At maximum efficiency point, we show that the impedance matching between waveguide and high-index media stack is enhanced and mode-conversion efficiency into asymmetric plasmon mode is also enhanced because of high-index contrast feeding waveguide and suitable operating wavelength range.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2015.2500366</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2016-02, Vol.34 (4), p.1184-1190 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2015_2500366 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Asymmetry Benchmark testing Efficiency heat-assisted magnetic recording (HAMR) Impedance matching Magnetic tape Media Metals NFT efficiency Optical reflection Optical waveguides plasmonic near-field transducer Plasmonics Plasmons Power transfer Transducers Waveguides Wavelengths |
title | Maximizing the Plasmonic Near-Field Transducer Efficiency to Its Limit for HAMR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20Plasmonic%20Near-Field%20Transducer%20Efficiency%20to%20Its%20Limit%20for%20HAMR&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Krishnamurthy,%20Vivek&rft.date=2016-02-15&rft.volume=34&rft.issue=4&rft.spage=1184&rft.epage=1190&rft.pages=1184-1190&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2015.2500366&rft_dat=%3Cproquest_cross%3E4047564201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-af1e6622c9fe408e1ca7d441b05de563332c9e1f6986447cffdb7da2e476476d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787231366&rft_id=info:pmid/&rft_ieee_id=7328246&rfr_iscdi=true |