Loading…
Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers
Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this w...
Saved in:
Published in: | Journal of lightwave technology 2022-07, Vol.40 (14), p.4795-4803 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3 |
container_end_page | 4803 |
container_issue | 14 |
container_start_page | 4795 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Dong, Liang |
description | Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability. |
doi_str_mv | 10.1109/JLT.2022.3165394 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2022_3165394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750914</ieee_id><sourcerecordid>2688690518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvBc2deXtIkxzGdTiZe5jm0aSIZXTuTTth_b0eHpweP7_d7j4-Qe6AzAKqf3tebGaOMzRAKgZpfkAkIoXLGAC_JhErEXEnGr8lNSltKgXMlJ-R5bu0hlr3LPrraNaH9zjqfbWLZpl8X07jOVm3qyyo0oT9moc2WoXIxm-_2TfBhoG7JlS-b5O7Oc0q-li-bxVu-_nxdLebr3CKqPmfDZ6KQnHlhNViGFkVdcMdojbaualVKja7yFUOohRKCYwVaSAau0I55nJLHsXcfu5-DS73ZdofYDicNK5QqNBWgBoqOlI1dStF5s49hV8ajAWpOrszgypxcmbOrIfIwRoJz7h_XUlANHP8A-VVjrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688690518</pqid></control><display><type>article</type><title>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Liang</creator><creatorcontrib>Dong, Liang</creatorcontrib><description>Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3165394</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplifiers ; Computational modeling ; Cylindrical shells ; Fiber lasers ; Heating systems ; Manganese ; Mathematical models ; Modelling ; Optical fiber amplifiers ; optical fiber lasers ; Rayleigh scattering ; Solid modeling ; Spontaneous emission ; Stability ; Steady-state ; sti-mulated thermal Rayleigh scattering ; Three dimensional models ; transverse mode instability</subject><ispartof>Journal of lightwave technology, 2022-07, Vol.40 (14), p.4795-4803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</citedby><cites>FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</cites><orcidid>0000-0001-6954-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Dong, Liang</creatorcontrib><title>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.</description><subject>Amplifiers</subject><subject>Computational modeling</subject><subject>Cylindrical shells</subject><subject>Fiber lasers</subject><subject>Heating systems</subject><subject>Manganese</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optical fiber amplifiers</subject><subject>optical fiber lasers</subject><subject>Rayleigh scattering</subject><subject>Solid modeling</subject><subject>Spontaneous emission</subject><subject>Stability</subject><subject>Steady-state</subject><subject>sti-mulated thermal Rayleigh scattering</subject><subject>Three dimensional models</subject><subject>transverse mode instability</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKd3wUvBc2deXtIkxzGdTiZe5jm0aSIZXTuTTth_b0eHpweP7_d7j4-Qe6AzAKqf3tebGaOMzRAKgZpfkAkIoXLGAC_JhErEXEnGr8lNSltKgXMlJ-R5bu0hlr3LPrraNaH9zjqfbWLZpl8X07jOVm3qyyo0oT9moc2WoXIxm-_2TfBhoG7JlS-b5O7Oc0q-li-bxVu-_nxdLebr3CKqPmfDZ6KQnHlhNViGFkVdcMdojbaualVKja7yFUOohRKCYwVaSAau0I55nJLHsXcfu5-DS73ZdofYDicNK5QqNBWgBoqOlI1dStF5s49hV8ajAWpOrszgypxcmbOrIfIwRoJz7h_XUlANHP8A-VVjrA</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Dong, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6954-6325</orcidid></search><sort><creationdate>20220715</creationdate><title>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</title><author>Dong, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifiers</topic><topic>Computational modeling</topic><topic>Cylindrical shells</topic><topic>Fiber lasers</topic><topic>Heating systems</topic><topic>Manganese</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optical fiber amplifiers</topic><topic>optical fiber lasers</topic><topic>Rayleigh scattering</topic><topic>Solid modeling</topic><topic>Spontaneous emission</topic><topic>Stability</topic><topic>Steady-state</topic><topic>sti-mulated thermal Rayleigh scattering</topic><topic>Three dimensional models</topic><topic>transverse mode instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-07-15</date><risdate>2022</risdate><volume>40</volume><issue>14</issue><spage>4795</spage><epage>4803</epage><pages>4795-4803</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3165394</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6954-6325</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-07, Vol.40 (14), p.4795-4803 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2022_3165394 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amplifiers Computational modeling Cylindrical shells Fiber lasers Heating systems Manganese Mathematical models Modelling Optical fiber amplifiers optical fiber lasers Rayleigh scattering Solid modeling Spontaneous emission Stability Steady-state sti-mulated thermal Rayleigh scattering Three dimensional models transverse mode instability |
title | Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Modeling%20of%20Transverse%20Mode%20Instability%20in%20Fiber%20Amplifiers&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Dong,%20Liang&rft.date=2022-07-15&rft.volume=40&rft.issue=14&rft.spage=4795&rft.epage=4803&rft.pages=4795-4803&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3165394&rft_dat=%3Cproquest_cross%3E2688690518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688690518&rft_id=info:pmid/&rft_ieee_id=9750914&rfr_iscdi=true |