Loading…

Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers

Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2022-07, Vol.40 (14), p.4795-4803
Main Author: Dong, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3
cites cdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3
container_end_page 4803
container_issue 14
container_start_page 4795
container_title Journal of lightwave technology
container_volume 40
creator Dong, Liang
description Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.
doi_str_mv 10.1109/JLT.2022.3165394
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2022_3165394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750914</ieee_id><sourcerecordid>2688690518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvBc2deXtIkxzGdTiZe5jm0aSIZXTuTTth_b0eHpweP7_d7j4-Qe6AzAKqf3tebGaOMzRAKgZpfkAkIoXLGAC_JhErEXEnGr8lNSltKgXMlJ-R5bu0hlr3LPrraNaH9zjqfbWLZpl8X07jOVm3qyyo0oT9moc2WoXIxm-_2TfBhoG7JlS-b5O7Oc0q-li-bxVu-_nxdLebr3CKqPmfDZ6KQnHlhNViGFkVdcMdojbaualVKja7yFUOohRKCYwVaSAau0I55nJLHsXcfu5-DS73ZdofYDicNK5QqNBWgBoqOlI1dStF5s49hV8ajAWpOrszgypxcmbOrIfIwRoJz7h_XUlANHP8A-VVjrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688690518</pqid></control><display><type>article</type><title>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong, Liang</creator><creatorcontrib>Dong, Liang</creatorcontrib><description>Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3165394</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplifiers ; Computational modeling ; Cylindrical shells ; Fiber lasers ; Heating systems ; Manganese ; Mathematical models ; Modelling ; Optical fiber amplifiers ; optical fiber lasers ; Rayleigh scattering ; Solid modeling ; Spontaneous emission ; Stability ; Steady-state ; sti-mulated thermal Rayleigh scattering ; Three dimensional models ; transverse mode instability</subject><ispartof>Journal of lightwave technology, 2022-07, Vol.40 (14), p.4795-4803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</citedby><cites>FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</cites><orcidid>0000-0001-6954-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Dong, Liang</creatorcontrib><title>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.</description><subject>Amplifiers</subject><subject>Computational modeling</subject><subject>Cylindrical shells</subject><subject>Fiber lasers</subject><subject>Heating systems</subject><subject>Manganese</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optical fiber amplifiers</subject><subject>optical fiber lasers</subject><subject>Rayleigh scattering</subject><subject>Solid modeling</subject><subject>Spontaneous emission</subject><subject>Stability</subject><subject>Steady-state</subject><subject>sti-mulated thermal Rayleigh scattering</subject><subject>Three dimensional models</subject><subject>transverse mode instability</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKd3wUvBc2deXtIkxzGdTiZe5jm0aSIZXTuTTth_b0eHpweP7_d7j4-Qe6AzAKqf3tebGaOMzRAKgZpfkAkIoXLGAC_JhErEXEnGr8lNSltKgXMlJ-R5bu0hlr3LPrraNaH9zjqfbWLZpl8X07jOVm3qyyo0oT9moc2WoXIxm-_2TfBhoG7JlS-b5O7Oc0q-li-bxVu-_nxdLebr3CKqPmfDZ6KQnHlhNViGFkVdcMdojbaualVKja7yFUOohRKCYwVaSAau0I55nJLHsXcfu5-DS73ZdofYDicNK5QqNBWgBoqOlI1dStF5s49hV8ajAWpOrszgypxcmbOrIfIwRoJz7h_XUlANHP8A-VVjrA</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Dong, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6954-6325</orcidid></search><sort><creationdate>20220715</creationdate><title>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</title><author>Dong, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifiers</topic><topic>Computational modeling</topic><topic>Cylindrical shells</topic><topic>Fiber lasers</topic><topic>Heating systems</topic><topic>Manganese</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optical fiber amplifiers</topic><topic>optical fiber lasers</topic><topic>Rayleigh scattering</topic><topic>Solid modeling</topic><topic>Spontaneous emission</topic><topic>Stability</topic><topic>Steady-state</topic><topic>sti-mulated thermal Rayleigh scattering</topic><topic>Three dimensional models</topic><topic>transverse mode instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-07-15</date><risdate>2022</risdate><volume>40</volume><issue>14</issue><spage>4795</spage><epage>4803</epage><pages>4795-4803</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Transverse mode instability is a key limit to power scaling of high-power fiber lasers. Accurate modeling efforts have, however, been hampered by a lack of experimental data to verify a model. Recently, there have been some good experimental studies, making it possible to validate a model. In this work, we developed a model by integrating a 3D fiber amplifier and stimulated thermal Rayleigh scattering. Since we are only interested in the regime where the fundamental mode dominates, our 3D amplifier divides the core into many cylindrical shells. This limits the model to situations where bend-induced mode distortion of the fundamental mode is negligible, but it is still applicable for most practical scenarios. The benefit of this model is high computational efficiency; it can run in minutes on a PC. This 3D amplifier model considers various pumping configurations and amplified spontaneous emission. It can simulate most experimental conditions. Excellent quantitative fit to experimental data was achieved. Additional studies were also conducted to show that gain saturation is a dominating effect in understanding the observed behaviors of transverse mode instability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3165394</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6954-6325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-07, Vol.40 (14), p.4795-4803
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2022_3165394
source IEEE Electronic Library (IEL) Journals
subjects Amplifiers
Computational modeling
Cylindrical shells
Fiber lasers
Heating systems
Manganese
Mathematical models
Modelling
Optical fiber amplifiers
optical fiber lasers
Rayleigh scattering
Solid modeling
Spontaneous emission
Stability
Steady-state
sti-mulated thermal Rayleigh scattering
Three dimensional models
transverse mode instability
title Accurate Modeling of Transverse Mode Instability in Fiber Amplifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Modeling%20of%20Transverse%20Mode%20Instability%20in%20Fiber%20Amplifiers&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Dong,%20Liang&rft.date=2022-07-15&rft.volume=40&rft.issue=14&rft.spage=4795&rft.epage=4803&rft.pages=4795-4803&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3165394&rft_dat=%3Cproquest_cross%3E2688690518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-216556742f5c91c23c35d64e20d3cdbd8a793ebfb231d585543b195721e69e2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688690518&rft_id=info:pmid/&rft_ieee_id=9750914&rfr_iscdi=true