Loading…
A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion
Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to...
Saved in:
Published in: | IEEE journal on miniaturization for air and space systems 2022-03, Vol.3 (1), p.9-18 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893 |
---|---|
cites | cdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 9 |
container_title | IEEE journal on miniaturization for air and space systems |
container_volume | 3 |
creator | Li, Yue Wang, Lizhe Liu, Xinlong Chu, Qiannian Yang, Xiaohong |
description | Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM. |
doi_str_mv | 10.1109/JMASS.2021.3091837 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMASS_2021_3091837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9463413</ieee_id><sourcerecordid>2645245828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOb-gN4EvO7MV9PkcsxvNoRVr0PWnkrH1sSkVfz3Zm6IV-fw8jznwIvQJSVTSom-eV7OynLKCKNTTjRVvDhBI5YXMuNUitN_-zmaxLghhDAiVKHYCK1meAWfLXxh1-DS2751Pey8C3aLy8FDyFYQ3XZIeYeX1vu2e8eNC8naJRKX0MV9dGt7i--HmLALdNbYbYTJcY7R2_3d6_wxW7w8PM1ni6yiBVeZErzK6_VaE1JbUoNMoZaisIJxXjda16zitbQMOIWqZqQCzkAwrWyhpdJ8jK4Pd31wHwPE3mzcELr00jApciZyxVSi2IGqgosxQGN8aHc2fBtKzL4-81uf2ddnjvUl6eogtQDwJ2ghuaCc_wBbVWq-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245828</pqid></control><display><type>article</type><title>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Yue ; Wang, Lizhe ; Liu, Xinlong ; Chu, Qiannian ; Yang, Xiaohong</creator><creatorcontrib>Li, Yue ; Wang, Lizhe ; Liu, Xinlong ; Chu, Qiannian ; Yang, Xiaohong</creatorcontrib><description>Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2021.3091837</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Correlation ; Data integration ; Distribution functions ; Graphical models ; Land cover ; Launch costs ; Mapping ; Multisensor fusion ; Pixels ; Remote sensing ; Satellite images ; Satellites ; Spatial data ; Spatial resolution ; spatiotemporal data fusion ; super-resolution mapping ; Superresolution ; Temporal resolution</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2022-03, Vol.3 (1), p.9-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</citedby><cites>FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</cites><orcidid>0000-0001-9352-7853 ; 0000-0001-9799-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9463413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Wang, Lizhe</creatorcontrib><creatorcontrib>Liu, Xinlong</creatorcontrib><creatorcontrib>Chu, Qiannian</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><title>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Data integration</subject><subject>Distribution functions</subject><subject>Graphical models</subject><subject>Land cover</subject><subject>Launch costs</subject><subject>Mapping</subject><subject>Multisensor fusion</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Satellite images</subject><subject>Satellites</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>spatiotemporal data fusion</subject><subject>super-resolution mapping</subject><subject>Superresolution</subject><subject>Temporal resolution</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOOb-gN4EvO7MV9PkcsxvNoRVr0PWnkrH1sSkVfz3Zm6IV-fw8jznwIvQJSVTSom-eV7OynLKCKNTTjRVvDhBI5YXMuNUitN_-zmaxLghhDAiVKHYCK1meAWfLXxh1-DS2751Pey8C3aLy8FDyFYQ3XZIeYeX1vu2e8eNC8naJRKX0MV9dGt7i--HmLALdNbYbYTJcY7R2_3d6_wxW7w8PM1ni6yiBVeZErzK6_VaE1JbUoNMoZaisIJxXjda16zitbQMOIWqZqQCzkAwrWyhpdJ8jK4Pd31wHwPE3mzcELr00jApciZyxVSi2IGqgosxQGN8aHc2fBtKzL4-81uf2ddnjvUl6eogtQDwJ2ghuaCc_wBbVWq-</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Yue</creator><creator>Wang, Lizhe</creator><creator>Liu, Xinlong</creator><creator>Chu, Qiannian</creator><creator>Yang, Xiaohong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9352-7853</orcidid><orcidid>https://orcid.org/0000-0001-9799-3210</orcidid></search><sort><creationdate>20220301</creationdate><title>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</title><author>Li, Yue ; Wang, Lizhe ; Liu, Xinlong ; Chu, Qiannian ; Yang, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Data integration</topic><topic>Distribution functions</topic><topic>Graphical models</topic><topic>Land cover</topic><topic>Launch costs</topic><topic>Mapping</topic><topic>Multisensor fusion</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Satellite images</topic><topic>Satellites</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>spatiotemporal data fusion</topic><topic>super-resolution mapping</topic><topic>Superresolution</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Wang, Lizhe</creatorcontrib><creatorcontrib>Liu, Xinlong</creatorcontrib><creatorcontrib>Chu, Qiannian</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Wang, Lizhe</au><au>Liu, Xinlong</au><au>Chu, Qiannian</au><au>Yang, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>9</spage><epage>18</epage><pages>9-18</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><abstract>Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2021.3091837</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9352-7853</orcidid><orcidid>https://orcid.org/0000-0001-9799-3210</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-3164 |
ispartof | IEEE journal on miniaturization for air and space systems, 2022-03, Vol.3 (1), p.9-18 |
issn | 2576-3164 2576-3164 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMASS_2021_3091837 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Correlation Data integration Distribution functions Graphical models Land cover Launch costs Mapping Multisensor fusion Pixels Remote sensing Satellite images Satellites Spatial data Spatial resolution spatiotemporal data fusion super-resolution mapping Superresolution Temporal resolution |
title | A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Spatiotemporal%20Super-Resolution%20Mapping%20for%20Remote%20Sensing%20Data%20Fusion&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Li,%20Yue&rft.date=2022-03-01&rft.volume=3&rft.issue=1&rft.spage=9&rft.epage=18&rft.pages=9-18&rft.issn=2576-3164&rft.eissn=2576-3164&rft_id=info:doi/10.1109/JMASS.2021.3091837&rft_dat=%3Cproquest_cross%3E2645245828%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645245828&rft_id=info:pmid/&rft_ieee_id=9463413&rfr_iscdi=true |