Loading…

A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion

Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on miniaturization for air and space systems 2022-03, Vol.3 (1), p.9-18
Main Authors: Li, Yue, Wang, Lizhe, Liu, Xinlong, Chu, Qiannian, Yang, Xiaohong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893
cites cdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893
container_end_page 18
container_issue 1
container_start_page 9
container_title IEEE journal on miniaturization for air and space systems
container_volume 3
creator Li, Yue
Wang, Lizhe
Liu, Xinlong
Chu, Qiannian
Yang, Xiaohong
description Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.
doi_str_mv 10.1109/JMASS.2021.3091837
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMASS_2021_3091837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9463413</ieee_id><sourcerecordid>2645245828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOb-gN4EvO7MV9PkcsxvNoRVr0PWnkrH1sSkVfz3Zm6IV-fw8jznwIvQJSVTSom-eV7OynLKCKNTTjRVvDhBI5YXMuNUitN_-zmaxLghhDAiVKHYCK1meAWfLXxh1-DS2751Pey8C3aLy8FDyFYQ3XZIeYeX1vu2e8eNC8naJRKX0MV9dGt7i--HmLALdNbYbYTJcY7R2_3d6_wxW7w8PM1ni6yiBVeZErzK6_VaE1JbUoNMoZaisIJxXjda16zitbQMOIWqZqQCzkAwrWyhpdJ8jK4Pd31wHwPE3mzcELr00jApciZyxVSi2IGqgosxQGN8aHc2fBtKzL4-81uf2ddnjvUl6eogtQDwJ2ghuaCc_wBbVWq-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245828</pqid></control><display><type>article</type><title>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Yue ; Wang, Lizhe ; Liu, Xinlong ; Chu, Qiannian ; Yang, Xiaohong</creator><creatorcontrib>Li, Yue ; Wang, Lizhe ; Liu, Xinlong ; Chu, Qiannian ; Yang, Xiaohong</creatorcontrib><description>Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2021.3091837</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Correlation ; Data integration ; Distribution functions ; Graphical models ; Land cover ; Launch costs ; Mapping ; Multisensor fusion ; Pixels ; Remote sensing ; Satellite images ; Satellites ; Spatial data ; Spatial resolution ; spatiotemporal data fusion ; super-resolution mapping ; Superresolution ; Temporal resolution</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2022-03, Vol.3 (1), p.9-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</citedby><cites>FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</cites><orcidid>0000-0001-9352-7853 ; 0000-0001-9799-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9463413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Wang, Lizhe</creatorcontrib><creatorcontrib>Liu, Xinlong</creatorcontrib><creatorcontrib>Chu, Qiannian</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><title>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Data integration</subject><subject>Distribution functions</subject><subject>Graphical models</subject><subject>Land cover</subject><subject>Launch costs</subject><subject>Mapping</subject><subject>Multisensor fusion</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Satellite images</subject><subject>Satellites</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>spatiotemporal data fusion</subject><subject>super-resolution mapping</subject><subject>Superresolution</subject><subject>Temporal resolution</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOOb-gN4EvO7MV9PkcsxvNoRVr0PWnkrH1sSkVfz3Zm6IV-fw8jznwIvQJSVTSom-eV7OynLKCKNTTjRVvDhBI5YXMuNUitN_-zmaxLghhDAiVKHYCK1meAWfLXxh1-DS2751Pey8C3aLy8FDyFYQ3XZIeYeX1vu2e8eNC8naJRKX0MV9dGt7i--HmLALdNbYbYTJcY7R2_3d6_wxW7w8PM1ni6yiBVeZErzK6_VaE1JbUoNMoZaisIJxXjda16zitbQMOIWqZqQCzkAwrWyhpdJ8jK4Pd31wHwPE3mzcELr00jApciZyxVSi2IGqgosxQGN8aHc2fBtKzL4-81uf2ddnjvUl6eogtQDwJ2ghuaCc_wBbVWq-</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Li, Yue</creator><creator>Wang, Lizhe</creator><creator>Liu, Xinlong</creator><creator>Chu, Qiannian</creator><creator>Yang, Xiaohong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9352-7853</orcidid><orcidid>https://orcid.org/0000-0001-9799-3210</orcidid></search><sort><creationdate>20220301</creationdate><title>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</title><author>Li, Yue ; Wang, Lizhe ; Liu, Xinlong ; Chu, Qiannian ; Yang, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Data integration</topic><topic>Distribution functions</topic><topic>Graphical models</topic><topic>Land cover</topic><topic>Launch costs</topic><topic>Mapping</topic><topic>Multisensor fusion</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Satellite images</topic><topic>Satellites</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>spatiotemporal data fusion</topic><topic>super-resolution mapping</topic><topic>Superresolution</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Wang, Lizhe</creatorcontrib><creatorcontrib>Liu, Xinlong</creatorcontrib><creatorcontrib>Chu, Qiannian</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Wang, Lizhe</au><au>Liu, Xinlong</au><au>Chu, Qiannian</au><au>Yang, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>9</spage><epage>18</epage><pages>9-18</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><abstract>Presently, due to the limitations of satellite launch cost and existing technology, it is scarcely possible to obtain single remotely sensed images with both fine-spatial resolution and high temporal resolution at the same time freely. For solving this kind of predicament, an effective method is to fuse multisource remote sensing data by using spatial-temporal super-resolution mapping (STSRM) algorithms. STSRM is developed on the foundation of super-resolution mapping (SRM), which is used for generating land-cover map with a finer spatial resolution by allocating subpixels position in the mixed pixels of coarse remotely sensed images. This review summarizes the existing mainstream models of spatiotemporal SRM and concludes the advantages and limitations of these methods. At the same time, this article analyzes methods of classification accuracy assessment, expounds the existing problems and challenges, and makes a forward-looking prospect for the future development direction of spatiotemporal SRM.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2021.3091837</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9352-7853</orcidid><orcidid>https://orcid.org/0000-0001-9799-3210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-3164
ispartof IEEE journal on miniaturization for air and space systems, 2022-03, Vol.3 (1), p.9-18
issn 2576-3164
2576-3164
language eng
recordid cdi_crossref_primary_10_1109_JMASS_2021_3091837
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Correlation
Data integration
Distribution functions
Graphical models
Land cover
Launch costs
Mapping
Multisensor fusion
Pixels
Remote sensing
Satellite images
Satellites
Spatial data
Spatial resolution
spatiotemporal data fusion
super-resolution mapping
Superresolution
Temporal resolution
title A Review of Spatiotemporal Super-Resolution Mapping for Remote Sensing Data Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Spatiotemporal%20Super-Resolution%20Mapping%20for%20Remote%20Sensing%20Data%20Fusion&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Li,%20Yue&rft.date=2022-03-01&rft.volume=3&rft.issue=1&rft.spage=9&rft.epage=18&rft.pages=9-18&rft.issn=2576-3164&rft.eissn=2576-3164&rft_id=info:doi/10.1109/JMASS.2021.3091837&rft_dat=%3Cproquest_cross%3E2645245828%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1738-843c5dbb900da0de67389647a4233df99d2c3d6a2e31ecd20ce32e4298a796893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645245828&rft_id=info:pmid/&rft_ieee_id=9463413&rfr_iscdi=true