Loading…

Anchor Losses in AlN Contour Mode Resonators

In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2015-04, Vol.24 (2), p.265-275
Main Authors: Segovia-Fernandez, Jeronimo, Cremonesi, Massimiliano, Cassella, Cristian, Frangi, Attilio, Piazza, Gianluca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983
cites cdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983
container_end_page 275
container_issue 2
container_start_page 265
container_title Journal of microelectromechanical systems
container_volume 24
creator Segovia-Fernandez, Jeronimo
Cremonesi, Massimiliano
Cassella, Cristian
Frangi, Attilio
Piazza, Gianluca
description In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.
doi_str_mv 10.1109/JMEMS.2014.2367418
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2014_2367418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6957513</ieee_id><sourcerecordid>10_1109_JMEMS_2014_2367418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</originalsourceid><addsrcrecordid>eNo9j8tOwzAQRS0EEqXwA7DJB5Dg92NZRaWAEpB4rC3HmYigEiM7LPh7XFqxmpHmntE9CF0SXBGCzc1Du25fKooJryiTihN9hBbEcFJiIvRx3rFQpSJCnaKzlD5wTnItF-h6Nfn3EIsmpASpGKditX0s6jDN4TsWbeiheIYUJjeHmM7RyeC2CS4Oc4nebtev9V3ZPG3u61VTei7oXJpO9k71xisjlGS-Y9SAhh5zDrRzUue793roFZVOa6WUcYa4DgwdsDCaLRHd__Ux14ow2K84frr4Ywm2O1_752t3vvbgm6GrPTQCwD8gcwVBGPsFwCdQvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anchor Losses in AlN Contour Mode Resonators</title><source>IEEE Xplore (Online service)</source><creator>Segovia-Fernandez, Jeronimo ; Cremonesi, Massimiliano ; Cassella, Cristian ; Frangi, Attilio ; Piazza, Gianluca</creator><creatorcontrib>Segovia-Fernandez, Jeronimo ; Cremonesi, Massimiliano ; Cassella, Cristian ; Frangi, Attilio ; Piazza, Gianluca</creatorcontrib><description>In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2014.2367418</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>IEEE</publisher><subject>AlN contour mode resonators ; anchor losses ; Damping ; Electrodes ; finite element analysis ; III-V semiconductor materials ; Metals ; perfectly matched layer ; quality factor ; Resonant frequency ; Temperature dependence ; temperature dependent dissipation ; Temperature measurement</subject><ispartof>Journal of microelectromechanical systems, 2015-04, Vol.24 (2), p.265-275</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</citedby><cites>FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6957513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Segovia-Fernandez, Jeronimo</creatorcontrib><creatorcontrib>Cremonesi, Massimiliano</creatorcontrib><creatorcontrib>Cassella, Cristian</creatorcontrib><creatorcontrib>Frangi, Attilio</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><title>Anchor Losses in AlN Contour Mode Resonators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.</description><subject>AlN contour mode resonators</subject><subject>anchor losses</subject><subject>Damping</subject><subject>Electrodes</subject><subject>finite element analysis</subject><subject>III-V semiconductor materials</subject><subject>Metals</subject><subject>perfectly matched layer</subject><subject>quality factor</subject><subject>Resonant frequency</subject><subject>Temperature dependence</subject><subject>temperature dependent dissipation</subject><subject>Temperature measurement</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOwzAQRS0EEqXwA7DJB5Dg92NZRaWAEpB4rC3HmYigEiM7LPh7XFqxmpHmntE9CF0SXBGCzc1Du25fKooJryiTihN9hBbEcFJiIvRx3rFQpSJCnaKzlD5wTnItF-h6Nfn3EIsmpASpGKditX0s6jDN4TsWbeiheIYUJjeHmM7RyeC2CS4Oc4nebtev9V3ZPG3u61VTei7oXJpO9k71xisjlGS-Y9SAhh5zDrRzUue793roFZVOa6WUcYa4DgwdsDCaLRHd__Ux14ow2K84frr4Ywm2O1_752t3vvbgm6GrPTQCwD8gcwVBGPsFwCdQvg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Segovia-Fernandez, Jeronimo</creator><creator>Cremonesi, Massimiliano</creator><creator>Cassella, Cristian</creator><creator>Frangi, Attilio</creator><creator>Piazza, Gianluca</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Anchor Losses in AlN Contour Mode Resonators</title><author>Segovia-Fernandez, Jeronimo ; Cremonesi, Massimiliano ; Cassella, Cristian ; Frangi, Attilio ; Piazza, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AlN contour mode resonators</topic><topic>anchor losses</topic><topic>Damping</topic><topic>Electrodes</topic><topic>finite element analysis</topic><topic>III-V semiconductor materials</topic><topic>Metals</topic><topic>perfectly matched layer</topic><topic>quality factor</topic><topic>Resonant frequency</topic><topic>Temperature dependence</topic><topic>temperature dependent dissipation</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segovia-Fernandez, Jeronimo</creatorcontrib><creatorcontrib>Cremonesi, Massimiliano</creatorcontrib><creatorcontrib>Cassella, Cristian</creatorcontrib><creatorcontrib>Frangi, Attilio</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segovia-Fernandez, Jeronimo</au><au>Cremonesi, Massimiliano</au><au>Cassella, Cristian</au><au>Frangi, Attilio</au><au>Piazza, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anchor Losses in AlN Contour Mode Resonators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>24</volume><issue>2</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.</abstract><pub>IEEE</pub><doi>10.1109/JMEMS.2014.2367418</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2015-04, Vol.24 (2), p.265-275
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2014_2367418
source IEEE Xplore (Online service)
subjects AlN contour mode resonators
anchor losses
Damping
Electrodes
finite element analysis
III-V semiconductor materials
Metals
perfectly matched layer
quality factor
Resonant frequency
Temperature dependence
temperature dependent dissipation
Temperature measurement
title Anchor Losses in AlN Contour Mode Resonators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anchor%20Losses%20in%20AlN%20Contour%20Mode%20Resonators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Segovia-Fernandez,%20Jeronimo&rft.date=2015-04-01&rft.volume=24&rft.issue=2&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2014.2367418&rft_dat=%3Ccrossref_ieee_%3E10_1109_JMEMS_2014_2367418%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6957513&rfr_iscdi=true