Loading…
Anchor Losses in AlN Contour Mode Resonators
In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wav...
Saved in:
Published in: | Journal of microelectromechanical systems 2015-04, Vol.24 (2), p.265-275 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983 |
container_end_page | 275 |
container_issue | 2 |
container_start_page | 265 |
container_title | Journal of microelectromechanical systems |
container_volume | 24 |
creator | Segovia-Fernandez, Jeronimo Cremonesi, Massimiliano Cassella, Cristian Frangi, Attilio Piazza, Gianluca |
description | In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally. |
doi_str_mv | 10.1109/JMEMS.2014.2367418 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2014_2367418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6957513</ieee_id><sourcerecordid>10_1109_JMEMS_2014_2367418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</originalsourceid><addsrcrecordid>eNo9j8tOwzAQRS0EEqXwA7DJB5Dg92NZRaWAEpB4rC3HmYigEiM7LPh7XFqxmpHmntE9CF0SXBGCzc1Du25fKooJryiTihN9hBbEcFJiIvRx3rFQpSJCnaKzlD5wTnItF-h6Nfn3EIsmpASpGKditX0s6jDN4TsWbeiheIYUJjeHmM7RyeC2CS4Oc4nebtev9V3ZPG3u61VTei7oXJpO9k71xisjlGS-Y9SAhh5zDrRzUue793roFZVOa6WUcYa4DgwdsDCaLRHd__Ux14ow2K84frr4Ywm2O1_752t3vvbgm6GrPTQCwD8gcwVBGPsFwCdQvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anchor Losses in AlN Contour Mode Resonators</title><source>IEEE Xplore (Online service)</source><creator>Segovia-Fernandez, Jeronimo ; Cremonesi, Massimiliano ; Cassella, Cristian ; Frangi, Attilio ; Piazza, Gianluca</creator><creatorcontrib>Segovia-Fernandez, Jeronimo ; Cremonesi, Massimiliano ; Cassella, Cristian ; Frangi, Attilio ; Piazza, Gianluca</creatorcontrib><description>In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2014.2367418</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>IEEE</publisher><subject>AlN contour mode resonators ; anchor losses ; Damping ; Electrodes ; finite element analysis ; III-V semiconductor materials ; Metals ; perfectly matched layer ; quality factor ; Resonant frequency ; Temperature dependence ; temperature dependent dissipation ; Temperature measurement</subject><ispartof>Journal of microelectromechanical systems, 2015-04, Vol.24 (2), p.265-275</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</citedby><cites>FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6957513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Segovia-Fernandez, Jeronimo</creatorcontrib><creatorcontrib>Cremonesi, Massimiliano</creatorcontrib><creatorcontrib>Cassella, Cristian</creatorcontrib><creatorcontrib>Frangi, Attilio</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><title>Anchor Losses in AlN Contour Mode Resonators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.</description><subject>AlN contour mode resonators</subject><subject>anchor losses</subject><subject>Damping</subject><subject>Electrodes</subject><subject>finite element analysis</subject><subject>III-V semiconductor materials</subject><subject>Metals</subject><subject>perfectly matched layer</subject><subject>quality factor</subject><subject>Resonant frequency</subject><subject>Temperature dependence</subject><subject>temperature dependent dissipation</subject><subject>Temperature measurement</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOwzAQRS0EEqXwA7DJB5Dg92NZRaWAEpB4rC3HmYigEiM7LPh7XFqxmpHmntE9CF0SXBGCzc1Du25fKooJryiTihN9hBbEcFJiIvRx3rFQpSJCnaKzlD5wTnItF-h6Nfn3EIsmpASpGKditX0s6jDN4TsWbeiheIYUJjeHmM7RyeC2CS4Oc4nebtev9V3ZPG3u61VTei7oXJpO9k71xisjlGS-Y9SAhh5zDrRzUue793roFZVOa6WUcYa4DgwdsDCaLRHd__Ux14ow2K84frr4Ywm2O1_752t3vvbgm6GrPTQCwD8gcwVBGPsFwCdQvg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Segovia-Fernandez, Jeronimo</creator><creator>Cremonesi, Massimiliano</creator><creator>Cassella, Cristian</creator><creator>Frangi, Attilio</creator><creator>Piazza, Gianluca</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Anchor Losses in AlN Contour Mode Resonators</title><author>Segovia-Fernandez, Jeronimo ; Cremonesi, Massimiliano ; Cassella, Cristian ; Frangi, Attilio ; Piazza, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AlN contour mode resonators</topic><topic>anchor losses</topic><topic>Damping</topic><topic>Electrodes</topic><topic>finite element analysis</topic><topic>III-V semiconductor materials</topic><topic>Metals</topic><topic>perfectly matched layer</topic><topic>quality factor</topic><topic>Resonant frequency</topic><topic>Temperature dependence</topic><topic>temperature dependent dissipation</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segovia-Fernandez, Jeronimo</creatorcontrib><creatorcontrib>Cremonesi, Massimiliano</creatorcontrib><creatorcontrib>Cassella, Cristian</creatorcontrib><creatorcontrib>Frangi, Attilio</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segovia-Fernandez, Jeronimo</au><au>Cremonesi, Massimiliano</au><au>Cassella, Cristian</au><au>Frangi, Attilio</au><au>Piazza, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anchor Losses in AlN Contour Mode Resonators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>24</volume><issue>2</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we analyze possible sources of dissipation in aluminium nitride (AlN) contour mode resonators for three different resonance frequency devices (fr) (220 MHz, 370 MHz, and 1.05 GHz). For this purpose, anchors of different widths (W a ) and lengths (L a ) proportional to the acoustic wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms that anchor losses are the dominant source of damping for most anchor designs when f r is equal to 220 and 370 MHz. For specific anchor dimensions (W a /λ is in the range of 1/4-1/2) that mitigate energy leakage through the supports, a temperature-dependent dissipation mechanism dominates as seen in higher f r resonators operating close to 1.05 GHz. To describe the Q due to anchor losses, we use a finite-element method with absorbing boundary conditions. We also propose a simple analytical formulation for describing the dependence of the temperature-dependent damping mechanism on frequency. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally.</abstract><pub>IEEE</pub><doi>10.1109/JMEMS.2014.2367418</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2015-04, Vol.24 (2), p.265-275 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2014_2367418 |
source | IEEE Xplore (Online service) |
subjects | AlN contour mode resonators anchor losses Damping Electrodes finite element analysis III-V semiconductor materials Metals perfectly matched layer quality factor Resonant frequency Temperature dependence temperature dependent dissipation Temperature measurement |
title | Anchor Losses in AlN Contour Mode Resonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anchor%20Losses%20in%20AlN%20Contour%20Mode%20Resonators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Segovia-Fernandez,%20Jeronimo&rft.date=2015-04-01&rft.volume=24&rft.issue=2&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2014.2367418&rft_dat=%3Ccrossref_ieee_%3E10_1109_JMEMS_2014_2367418%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-9b6da7d9c795763cb329e8ed044e2ba68b6dcc8fd726a887779a91abe92f05983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6957513&rfr_iscdi=true |