Loading…

Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method

We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical R...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on multiscale and multiphysics computational techniques 2022, Vol.7, p.161-167
Main Authors: Lasisi, Shakirudeen O., Benson, Trevor M., Greenaway, Mark T., Gradoni, Gabriele, Cools, Kristof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403
cites cdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403
container_end_page 167
container_issue
container_start_page 161
container_title IEEE journal on multiscale and multiphysics computational techniques
container_volume 7
creator Lasisi, Shakirudeen O.
Benson, Trevor M.
Greenaway, Mark T.
Gradoni, Gabriele
Cools, Kristof
description We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.
doi_str_mv 10.1109/JMMCT.2022.3187022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMMCT_2022_3187022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9809810</ieee_id><sourcerecordid>2689815246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIVKU_ABdLnFP8aBz7SB-81KgSCufIidc0VWKXODnw97ikQpx2tTszuzNRdEvwnBAsH96ybJXPKaZ0zohIQ72IJpSlMhaCJJf_-uto5v0BY0xSSjGmk0hlTkNT20_kDHoH76yyPcoHa8fpug57tPNV3TSqd51HS-VBI2dRvweU1y3Ea9eq2qKlG6xW3TfaNNBCUMmg3zt9E10Z1XiYnes0-nja5KuXeLt7fl09buOKMdnHlFWaGiJ1GjwITJiUCWelNsCNMFqyBKdsoYHzKgGhjBa8VMxwWla8hAVm0-h-1D127msA3xcHN3Q2nCwoFzK4pwseUHREVZ3zvgNTHLu6DV8XBBenNIvfNItTmsU5zUC6G0k1APwRpMBBFbMf7IlwlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689815246</pqid></control><display><type>article</type><title>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</title><source>IEEE Xplore (Online service)</source><creator>Lasisi, Shakirudeen O. ; Benson, Trevor M. ; Greenaway, Mark T. ; Gradoni, Gabriele ; Cools, Kristof</creator><creatorcontrib>Lasisi, Shakirudeen O. ; Benson, Trevor M. ; Greenaway, Mark T. ; Gradoni, Gabriele ; Cools, Kristof</creatorcontrib><description>We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.</description><identifier>ISSN: 2379-8815</identifier><identifier>EISSN: 2379-8815</identifier><identifier>DOI: 10.1109/JMMCT.2022.3187022</identifier><identifier>CODEN: IJMMOP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>BEM ; Boundary element method ; Circuits ; Electric fields ; Finite element method ; Integral equations ; Integrated circuit modeling ; Mathematical analysis ; Mathematical models ; modeling ; Mutual coupling ; Oscillators ; Resonant tunneling ; Resonant tunneling devices ; RLC circuits ; RTD ; Solvers ; Synchronism ; TD-BEM ; terahertz ; THz ; Time domain analysis ; Tunnel diodes ; Voltage</subject><ispartof>IEEE journal on multiscale and multiphysics computational techniques, 2022, Vol.7, p.161-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</citedby><cites>FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</cites><orcidid>0000-0003-3574-4475 ; 0000-0002-7153-0215 ; 0000-0003-3243-3794 ; 0000-0001-8321-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9809810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lasisi, Shakirudeen O.</creatorcontrib><creatorcontrib>Benson, Trevor M.</creatorcontrib><creatorcontrib>Greenaway, Mark T.</creatorcontrib><creatorcontrib>Gradoni, Gabriele</creatorcontrib><creatorcontrib>Cools, Kristof</creatorcontrib><title>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</title><title>IEEE journal on multiscale and multiphysics computational techniques</title><addtitle>JMMCT</addtitle><description>We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.</description><subject>BEM</subject><subject>Boundary element method</subject><subject>Circuits</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Integral equations</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Mutual coupling</subject><subject>Oscillators</subject><subject>Resonant tunneling</subject><subject>Resonant tunneling devices</subject><subject>RLC circuits</subject><subject>RTD</subject><subject>Solvers</subject><subject>Synchronism</subject><subject>TD-BEM</subject><subject>terahertz</subject><subject>THz</subject><subject>Time domain analysis</subject><subject>Tunnel diodes</subject><subject>Voltage</subject><issn>2379-8815</issn><issn>2379-8815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOwzAQjBBIVKU_ABdLnFP8aBz7SB-81KgSCufIidc0VWKXODnw97ikQpx2tTszuzNRdEvwnBAsH96ybJXPKaZ0zohIQ72IJpSlMhaCJJf_-uto5v0BY0xSSjGmk0hlTkNT20_kDHoH76yyPcoHa8fpug57tPNV3TSqd51HS-VBI2dRvweU1y3Ea9eq2qKlG6xW3TfaNNBCUMmg3zt9E10Z1XiYnes0-nja5KuXeLt7fl09buOKMdnHlFWaGiJ1GjwITJiUCWelNsCNMFqyBKdsoYHzKgGhjBa8VMxwWla8hAVm0-h-1D127msA3xcHN3Q2nCwoFzK4pwseUHREVZ3zvgNTHLu6DV8XBBenNIvfNItTmsU5zUC6G0k1APwRpMBBFbMf7IlwlA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lasisi, Shakirudeen O.</creator><creator>Benson, Trevor M.</creator><creator>Greenaway, Mark T.</creator><creator>Gradoni, Gabriele</creator><creator>Cools, Kristof</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3574-4475</orcidid><orcidid>https://orcid.org/0000-0002-7153-0215</orcidid><orcidid>https://orcid.org/0000-0003-3243-3794</orcidid><orcidid>https://orcid.org/0000-0001-8321-6883</orcidid></search><sort><creationdate>2022</creationdate><title>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</title><author>Lasisi, Shakirudeen O. ; Benson, Trevor M. ; Greenaway, Mark T. ; Gradoni, Gabriele ; Cools, Kristof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BEM</topic><topic>Boundary element method</topic><topic>Circuits</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Integral equations</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Mutual coupling</topic><topic>Oscillators</topic><topic>Resonant tunneling</topic><topic>Resonant tunneling devices</topic><topic>RLC circuits</topic><topic>RTD</topic><topic>Solvers</topic><topic>Synchronism</topic><topic>TD-BEM</topic><topic>terahertz</topic><topic>THz</topic><topic>Time domain analysis</topic><topic>Tunnel diodes</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasisi, Shakirudeen O.</creatorcontrib><creatorcontrib>Benson, Trevor M.</creatorcontrib><creatorcontrib>Greenaway, Mark T.</creatorcontrib><creatorcontrib>Gradoni, Gabriele</creatorcontrib><creatorcontrib>Cools, Kristof</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasisi, Shakirudeen O.</au><au>Benson, Trevor M.</au><au>Greenaway, Mark T.</au><au>Gradoni, Gabriele</au><au>Cools, Kristof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</atitle><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle><stitle>JMMCT</stitle><date>2022</date><risdate>2022</risdate><volume>7</volume><spage>161</spage><epage>167</epage><pages>161-167</pages><issn>2379-8815</issn><eissn>2379-8815</eissn><coden>IJMMOP</coden><abstract>We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMMCT.2022.3187022</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3574-4475</orcidid><orcidid>https://orcid.org/0000-0002-7153-0215</orcidid><orcidid>https://orcid.org/0000-0003-3243-3794</orcidid><orcidid>https://orcid.org/0000-0001-8321-6883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-8815
ispartof IEEE journal on multiscale and multiphysics computational techniques, 2022, Vol.7, p.161-167
issn 2379-8815
2379-8815
language eng
recordid cdi_crossref_primary_10_1109_JMMCT_2022_3187022
source IEEE Xplore (Online service)
subjects BEM
Boundary element method
Circuits
Electric fields
Finite element method
Integral equations
Integrated circuit modeling
Mathematical analysis
Mathematical models
modeling
Mutual coupling
Oscillators
Resonant tunneling
Resonant tunneling devices
RLC circuits
RTD
Solvers
Synchronism
TD-BEM
terahertz
THz
Time domain analysis
Tunnel diodes
Voltage
title Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Resonant%20Tunneling%20Diode%20Oscillators%20Based%20on%20the%20Time-Domain%20Boundary%20Element%20Method&rft.jtitle=IEEE%20journal%20on%20multiscale%20and%20multiphysics%20computational%20techniques&rft.au=Lasisi,%20Shakirudeen%20O.&rft.date=2022&rft.volume=7&rft.spage=161&rft.epage=167&rft.pages=161-167&rft.issn=2379-8815&rft.eissn=2379-8815&rft.coden=IJMMOP&rft_id=info:doi/10.1109/JMMCT.2022.3187022&rft_dat=%3Cproquest_cross%3E2689815246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689815246&rft_id=info:pmid/&rft_ieee_id=9809810&rfr_iscdi=true