Loading…
Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method
We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical R...
Saved in:
Published in: | IEEE journal on multiscale and multiphysics computational techniques 2022, Vol.7, p.161-167 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403 |
container_end_page | 167 |
container_issue | |
container_start_page | 161 |
container_title | IEEE journal on multiscale and multiphysics computational techniques |
container_volume | 7 |
creator | Lasisi, Shakirudeen O. Benson, Trevor M. Greenaway, Mark T. Gradoni, Gabriele Cools, Kristof |
description | We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology. |
doi_str_mv | 10.1109/JMMCT.2022.3187022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMMCT_2022_3187022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9809810</ieee_id><sourcerecordid>2689815246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIVKU_ABdLnFP8aBz7SB-81KgSCufIidc0VWKXODnw97ikQpx2tTszuzNRdEvwnBAsH96ybJXPKaZ0zohIQ72IJpSlMhaCJJf_-uto5v0BY0xSSjGmk0hlTkNT20_kDHoH76yyPcoHa8fpug57tPNV3TSqd51HS-VBI2dRvweU1y3Ea9eq2qKlG6xW3TfaNNBCUMmg3zt9E10Z1XiYnes0-nja5KuXeLt7fl09buOKMdnHlFWaGiJ1GjwITJiUCWelNsCNMFqyBKdsoYHzKgGhjBa8VMxwWla8hAVm0-h-1D127msA3xcHN3Q2nCwoFzK4pwseUHREVZ3zvgNTHLu6DV8XBBenNIvfNItTmsU5zUC6G0k1APwRpMBBFbMf7IlwlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689815246</pqid></control><display><type>article</type><title>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</title><source>IEEE Xplore (Online service)</source><creator>Lasisi, Shakirudeen O. ; Benson, Trevor M. ; Greenaway, Mark T. ; Gradoni, Gabriele ; Cools, Kristof</creator><creatorcontrib>Lasisi, Shakirudeen O. ; Benson, Trevor M. ; Greenaway, Mark T. ; Gradoni, Gabriele ; Cools, Kristof</creatorcontrib><description>We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.</description><identifier>ISSN: 2379-8815</identifier><identifier>EISSN: 2379-8815</identifier><identifier>DOI: 10.1109/JMMCT.2022.3187022</identifier><identifier>CODEN: IJMMOP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>BEM ; Boundary element method ; Circuits ; Electric fields ; Finite element method ; Integral equations ; Integrated circuit modeling ; Mathematical analysis ; Mathematical models ; modeling ; Mutual coupling ; Oscillators ; Resonant tunneling ; Resonant tunneling devices ; RLC circuits ; RTD ; Solvers ; Synchronism ; TD-BEM ; terahertz ; THz ; Time domain analysis ; Tunnel diodes ; Voltage</subject><ispartof>IEEE journal on multiscale and multiphysics computational techniques, 2022, Vol.7, p.161-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</citedby><cites>FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</cites><orcidid>0000-0003-3574-4475 ; 0000-0002-7153-0215 ; 0000-0003-3243-3794 ; 0000-0001-8321-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9809810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lasisi, Shakirudeen O.</creatorcontrib><creatorcontrib>Benson, Trevor M.</creatorcontrib><creatorcontrib>Greenaway, Mark T.</creatorcontrib><creatorcontrib>Gradoni, Gabriele</creatorcontrib><creatorcontrib>Cools, Kristof</creatorcontrib><title>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</title><title>IEEE journal on multiscale and multiphysics computational techniques</title><addtitle>JMMCT</addtitle><description>We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.</description><subject>BEM</subject><subject>Boundary element method</subject><subject>Circuits</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Integral equations</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Mutual coupling</subject><subject>Oscillators</subject><subject>Resonant tunneling</subject><subject>Resonant tunneling devices</subject><subject>RLC circuits</subject><subject>RTD</subject><subject>Solvers</subject><subject>Synchronism</subject><subject>TD-BEM</subject><subject>terahertz</subject><subject>THz</subject><subject>Time domain analysis</subject><subject>Tunnel diodes</subject><subject>Voltage</subject><issn>2379-8815</issn><issn>2379-8815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOwzAQjBBIVKU_ABdLnFP8aBz7SB-81KgSCufIidc0VWKXODnw97ikQpx2tTszuzNRdEvwnBAsH96ybJXPKaZ0zohIQ72IJpSlMhaCJJf_-uto5v0BY0xSSjGmk0hlTkNT20_kDHoH76yyPcoHa8fpug57tPNV3TSqd51HS-VBI2dRvweU1y3Ea9eq2qKlG6xW3TfaNNBCUMmg3zt9E10Z1XiYnes0-nja5KuXeLt7fl09buOKMdnHlFWaGiJ1GjwITJiUCWelNsCNMFqyBKdsoYHzKgGhjBa8VMxwWla8hAVm0-h-1D127msA3xcHN3Q2nCwoFzK4pwseUHREVZ3zvgNTHLu6DV8XBBenNIvfNItTmsU5zUC6G0k1APwRpMBBFbMf7IlwlA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lasisi, Shakirudeen O.</creator><creator>Benson, Trevor M.</creator><creator>Greenaway, Mark T.</creator><creator>Gradoni, Gabriele</creator><creator>Cools, Kristof</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3574-4475</orcidid><orcidid>https://orcid.org/0000-0002-7153-0215</orcidid><orcidid>https://orcid.org/0000-0003-3243-3794</orcidid><orcidid>https://orcid.org/0000-0001-8321-6883</orcidid></search><sort><creationdate>2022</creationdate><title>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</title><author>Lasisi, Shakirudeen O. ; Benson, Trevor M. ; Greenaway, Mark T. ; Gradoni, Gabriele ; Cools, Kristof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BEM</topic><topic>Boundary element method</topic><topic>Circuits</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Integral equations</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Mutual coupling</topic><topic>Oscillators</topic><topic>Resonant tunneling</topic><topic>Resonant tunneling devices</topic><topic>RLC circuits</topic><topic>RTD</topic><topic>Solvers</topic><topic>Synchronism</topic><topic>TD-BEM</topic><topic>terahertz</topic><topic>THz</topic><topic>Time domain analysis</topic><topic>Tunnel diodes</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasisi, Shakirudeen O.</creatorcontrib><creatorcontrib>Benson, Trevor M.</creatorcontrib><creatorcontrib>Greenaway, Mark T.</creatorcontrib><creatorcontrib>Gradoni, Gabriele</creatorcontrib><creatorcontrib>Cools, Kristof</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasisi, Shakirudeen O.</au><au>Benson, Trevor M.</au><au>Greenaway, Mark T.</au><au>Gradoni, Gabriele</au><au>Cools, Kristof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method</atitle><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle><stitle>JMMCT</stitle><date>2022</date><risdate>2022</risdate><volume>7</volume><spage>161</spage><epage>167</epage><pages>161-167</pages><issn>2379-8815</issn><eissn>2379-8815</eissn><coden>IJMMOP</coden><abstract>We demonstrate how the coupling of a full-wave time-domain boundary element method (BEM) solver with a circuit solver can be used to model 1) the generation of high frequency oscillations in resonant tunneling diode (RTD) oscillators, and 2) the mutual coupling and synchronization of non-identical RTDs with significant differences in frequencies to achieve coherent power combination. Numerical simulations show a combined output power of up to 3.7 times a single oscillator in synchronized devices. The non-differential conductance of the RTD is modeled as a lumped component with a non-linear current-voltage relationship. The lumped element is coupled to the radiating structure using a finite-gap model in a consistent and discretisation independent manner. The resulting circuit equations are solved simultaneously and consistently with time-domain electric field integral equations that model the transient scattering of electromagnetic (EM) fields from conducting surfaces that make up the device. This paper introduces three novel elements: (i) the application of a mesh independent feed line to the modelling of feed lines of RTD devices, (ii) the coupling of the radiating system to a strongly non-linear component with negative differential resistance, and (iii) the verification of this model with circuit models where applicable and against the experimental observation of synchronisation when two RTDs are placed in close proximity. These three elements provide a methodology that create the capacity to model RTD sources and related technology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMMCT.2022.3187022</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3574-4475</orcidid><orcidid>https://orcid.org/0000-0002-7153-0215</orcidid><orcidid>https://orcid.org/0000-0003-3243-3794</orcidid><orcidid>https://orcid.org/0000-0001-8321-6883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8815 |
ispartof | IEEE journal on multiscale and multiphysics computational techniques, 2022, Vol.7, p.161-167 |
issn | 2379-8815 2379-8815 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMMCT_2022_3187022 |
source | IEEE Xplore (Online service) |
subjects | BEM Boundary element method Circuits Electric fields Finite element method Integral equations Integrated circuit modeling Mathematical analysis Mathematical models modeling Mutual coupling Oscillators Resonant tunneling Resonant tunneling devices RLC circuits RTD Solvers Synchronism TD-BEM terahertz THz Time domain analysis Tunnel diodes Voltage |
title | Modeling of Resonant Tunneling Diode Oscillators Based on the Time-Domain Boundary Element Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Resonant%20Tunneling%20Diode%20Oscillators%20Based%20on%20the%20Time-Domain%20Boundary%20Element%20Method&rft.jtitle=IEEE%20journal%20on%20multiscale%20and%20multiphysics%20computational%20techniques&rft.au=Lasisi,%20Shakirudeen%20O.&rft.date=2022&rft.volume=7&rft.spage=161&rft.epage=167&rft.pages=161-167&rft.issn=2379-8815&rft.eissn=2379-8815&rft.coden=IJMMOP&rft_id=info:doi/10.1109/JMMCT.2022.3187022&rft_dat=%3Cproquest_cross%3E2689815246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-23cd2f19d7318801399563bdfe6f8fd9350734de66c5e8afd86ba3f62bc6be403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689815246&rft_id=info:pmid/&rft_ieee_id=9809810&rfr_iscdi=true |