Loading…

High-Resolution Ocean Clutter Spectrum Estimation for Shipborne HFSWR Using Sparse-Representation-Based MUSIC

The spreading of the dominant first-order Bragg lines in shipborne high-frequency surface wave radar (HFSWR) severely obscures the detection of the slow-moving targets and the measurement of ocean clutter. Space-time adaptive processing (STAP) is an effective tool for solving the problem. It normall...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 2015-07, Vol.40 (3), p.546-557
Main Authors: Xie, Junhao, Wang, Zhongbao, Ji, Zhenyuan, Quan, Taifan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23
cites cdi_FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23
container_end_page 557
container_issue 3
container_start_page 546
container_title IEEE journal of oceanic engineering
container_volume 40
creator Xie, Junhao
Wang, Zhongbao
Ji, Zhenyuan
Quan, Taifan
description The spreading of the dominant first-order Bragg lines in shipborne high-frequency surface wave radar (HFSWR) severely obscures the detection of the slow-moving targets and the measurement of ocean clutter. Space-time adaptive processing (STAP) is an effective tool for solving the problem. It normally requires a large number of independent and identically distributed (i.i.d.) training samples to estimate the ocean clutter spectrum and design the filter to eliminate the ocean clutter from the test cell. However, the training samples are insufficient due to the system limitation of shipborne HFSWR, and the stationarity of training data is destroyed in the nonstationary and nonhomogeneous ocean environment, which result in decreased performance. Thus, the estimation of the ocean clutter spectrum with small training samples or even only the test cell is an important work for shipborne HFSWR. In this paper, by exploiting the intrinsic sparsity of the ocean clutter in shipborne HFSWR, the multiple signal classification (MUSIC) algorithm based on the sparse representation technique, called SR-MUSIC, is introduced to estimate the ocean clutter spectrum. The correctness of the ocean clutter sparsity and the validity of the SR-MUSIC algorithm for the high-resolution ocean clutter spectrum estimation are verified by the simulation results.
doi_str_mv 10.1109/JOE.2014.2329430
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JOE_2014_2329430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6841649</ieee_id><sourcerecordid>10_1109_JOE_2014_2329430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYjeTbzsCxQ7bbe7PeoGBIMhAYnHTelOYQ3sbtrl4NtbkHiazOT7_0w-Qh6BjQCYfn5fjEecgRxxwbUU7IoMIE1zCkrDNRkwoSTVLNW35C6EbxZJmekBOUzr7Y4uMbT7Y1-3TbKwaJqkiFuPPll1aHt_PCTj0NcHcyZcG--7utu0vsFkOll9LZN1qJttpI0PGNs6jwGb_szTVxOwSj7Wq1lxT26c2Qd8uMwhWU_Gn8WUzhdvs-JlTq1koqcKNmikS1MuERyiyQyrNDMVAnJtDChbucxAylOO1mWQIc9A8LxSLsstF0PC_nqtb0Pw6MrOx_f9TwmsPOkqo67ypKu86IqRp79IjYj_uMolKKnFL1yHZ90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Resolution Ocean Clutter Spectrum Estimation for Shipborne HFSWR Using Sparse-Representation-Based MUSIC</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xie, Junhao ; Wang, Zhongbao ; Ji, Zhenyuan ; Quan, Taifan</creator><creatorcontrib>Xie, Junhao ; Wang, Zhongbao ; Ji, Zhenyuan ; Quan, Taifan</creatorcontrib><description>The spreading of the dominant first-order Bragg lines in shipborne high-frequency surface wave radar (HFSWR) severely obscures the detection of the slow-moving targets and the measurement of ocean clutter. Space-time adaptive processing (STAP) is an effective tool for solving the problem. It normally requires a large number of independent and identically distributed (i.i.d.) training samples to estimate the ocean clutter spectrum and design the filter to eliminate the ocean clutter from the test cell. However, the training samples are insufficient due to the system limitation of shipborne HFSWR, and the stationarity of training data is destroyed in the nonstationary and nonhomogeneous ocean environment, which result in decreased performance. Thus, the estimation of the ocean clutter spectrum with small training samples or even only the test cell is an important work for shipborne HFSWR. In this paper, by exploiting the intrinsic sparsity of the ocean clutter in shipborne HFSWR, the multiple signal classification (MUSIC) algorithm based on the sparse representation technique, called SR-MUSIC, is introduced to estimate the ocean clutter spectrum. The correctness of the ocean clutter sparsity and the validity of the SR-MUSIC algorithm for the high-resolution ocean clutter spectrum estimation are verified by the simulation results.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2014.2329430</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Covariance matrices ; Doppler effect ; Estimation ; Multiple signal classification (MUSIC) ; Oceans ; shipborne high-frequency surface wave radar (HFSWR) ; space-time adaptive processing (STAP) ; sparse representation ; Training ; Vectors</subject><ispartof>IEEE journal of oceanic engineering, 2015-07, Vol.40 (3), p.546-557</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23</citedby><cites>FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23</cites><orcidid>0000-0001-6094-5805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6841649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xie, Junhao</creatorcontrib><creatorcontrib>Wang, Zhongbao</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Quan, Taifan</creatorcontrib><title>High-Resolution Ocean Clutter Spectrum Estimation for Shipborne HFSWR Using Sparse-Representation-Based MUSIC</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>The spreading of the dominant first-order Bragg lines in shipborne high-frequency surface wave radar (HFSWR) severely obscures the detection of the slow-moving targets and the measurement of ocean clutter. Space-time adaptive processing (STAP) is an effective tool for solving the problem. It normally requires a large number of independent and identically distributed (i.i.d.) training samples to estimate the ocean clutter spectrum and design the filter to eliminate the ocean clutter from the test cell. However, the training samples are insufficient due to the system limitation of shipborne HFSWR, and the stationarity of training data is destroyed in the nonstationary and nonhomogeneous ocean environment, which result in decreased performance. Thus, the estimation of the ocean clutter spectrum with small training samples or even only the test cell is an important work for shipborne HFSWR. In this paper, by exploiting the intrinsic sparsity of the ocean clutter in shipborne HFSWR, the multiple signal classification (MUSIC) algorithm based on the sparse representation technique, called SR-MUSIC, is introduced to estimate the ocean clutter spectrum. The correctness of the ocean clutter sparsity and the validity of the SR-MUSIC algorithm for the high-resolution ocean clutter spectrum estimation are verified by the simulation results.</description><subject>Clutter</subject><subject>Covariance matrices</subject><subject>Doppler effect</subject><subject>Estimation</subject><subject>Multiple signal classification (MUSIC)</subject><subject>Oceans</subject><subject>shipborne high-frequency surface wave radar (HFSWR)</subject><subject>space-time adaptive processing (STAP)</subject><subject>sparse representation</subject><subject>Training</subject><subject>Vectors</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEQhhujiYjeTbzsCxQ7bbe7PeoGBIMhAYnHTelOYQ3sbtrl4NtbkHiazOT7_0w-Qh6BjQCYfn5fjEecgRxxwbUU7IoMIE1zCkrDNRkwoSTVLNW35C6EbxZJmekBOUzr7Y4uMbT7Y1-3TbKwaJqkiFuPPll1aHt_PCTj0NcHcyZcG--7utu0vsFkOll9LZN1qJttpI0PGNs6jwGb_szTVxOwSj7Wq1lxT26c2Qd8uMwhWU_Gn8WUzhdvs-JlTq1koqcKNmikS1MuERyiyQyrNDMVAnJtDChbucxAylOO1mWQIc9A8LxSLsstF0PC_nqtb0Pw6MrOx_f9TwmsPOkqo67ypKu86IqRp79IjYj_uMolKKnFL1yHZ90</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Xie, Junhao</creator><creator>Wang, Zhongbao</creator><creator>Ji, Zhenyuan</creator><creator>Quan, Taifan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6094-5805</orcidid></search><sort><creationdate>20150701</creationdate><title>High-Resolution Ocean Clutter Spectrum Estimation for Shipborne HFSWR Using Sparse-Representation-Based MUSIC</title><author>Xie, Junhao ; Wang, Zhongbao ; Ji, Zhenyuan ; Quan, Taifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clutter</topic><topic>Covariance matrices</topic><topic>Doppler effect</topic><topic>Estimation</topic><topic>Multiple signal classification (MUSIC)</topic><topic>Oceans</topic><topic>shipborne high-frequency surface wave radar (HFSWR)</topic><topic>space-time adaptive processing (STAP)</topic><topic>sparse representation</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Junhao</creatorcontrib><creatorcontrib>Wang, Zhongbao</creatorcontrib><creatorcontrib>Ji, Zhenyuan</creatorcontrib><creatorcontrib>Quan, Taifan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Junhao</au><au>Wang, Zhongbao</au><au>Ji, Zhenyuan</au><au>Quan, Taifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Ocean Clutter Spectrum Estimation for Shipborne HFSWR Using Sparse-Representation-Based MUSIC</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>40</volume><issue>3</issue><spage>546</spage><epage>557</epage><pages>546-557</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>The spreading of the dominant first-order Bragg lines in shipborne high-frequency surface wave radar (HFSWR) severely obscures the detection of the slow-moving targets and the measurement of ocean clutter. Space-time adaptive processing (STAP) is an effective tool for solving the problem. It normally requires a large number of independent and identically distributed (i.i.d.) training samples to estimate the ocean clutter spectrum and design the filter to eliminate the ocean clutter from the test cell. However, the training samples are insufficient due to the system limitation of shipborne HFSWR, and the stationarity of training data is destroyed in the nonstationary and nonhomogeneous ocean environment, which result in decreased performance. Thus, the estimation of the ocean clutter spectrum with small training samples or even only the test cell is an important work for shipborne HFSWR. In this paper, by exploiting the intrinsic sparsity of the ocean clutter in shipborne HFSWR, the multiple signal classification (MUSIC) algorithm based on the sparse representation technique, called SR-MUSIC, is introduced to estimate the ocean clutter spectrum. The correctness of the ocean clutter sparsity and the validity of the SR-MUSIC algorithm for the high-resolution ocean clutter spectrum estimation are verified by the simulation results.</abstract><pub>IEEE</pub><doi>10.1109/JOE.2014.2329430</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6094-5805</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2015-07, Vol.40 (3), p.546-557
issn 0364-9059
1558-1691
language eng
recordid cdi_crossref_primary_10_1109_JOE_2014_2329430
source IEEE Electronic Library (IEL) Journals
subjects Clutter
Covariance matrices
Doppler effect
Estimation
Multiple signal classification (MUSIC)
Oceans
shipborne high-frequency surface wave radar (HFSWR)
space-time adaptive processing (STAP)
sparse representation
Training
Vectors
title High-Resolution Ocean Clutter Spectrum Estimation for Shipborne HFSWR Using Sparse-Representation-Based MUSIC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Ocean%20Clutter%20Spectrum%20Estimation%20for%20Shipborne%20HFSWR%20Using%20Sparse-Representation-Based%20MUSIC&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Xie,%20Junhao&rft.date=2015-07-01&rft.volume=40&rft.issue=3&rft.spage=546&rft.epage=557&rft.pages=546-557&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2014.2329430&rft_dat=%3Ccrossref_ieee_%3E10_1109_JOE_2014_2329430%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-61bea4f5524e1feea7a0d90ade1e29aa16cdf7a15252ecf717e271328d6f78c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6841649&rfr_iscdi=true