Loading…

Mobile Solar Power

The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2013-01, Vol.3 (1), p.535-541
Main Authors: Trautz, K. M., Jenkins, P. P., Walters, R. J., Scheiman, D., Hoheisel, R., Tatavarti, R., Chan, R., Miyamoto, H., Adams, J. G. J., Elarde, V. C., Grimsley, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3
cites cdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3
container_end_page 541
container_issue 1
container_start_page 535
container_title IEEE journal of photovoltaics
container_volume 3
creator Trautz, K. M.
Jenkins, P. P.
Walters, R. J.
Scheiman, D.
Hoheisel, R.
Tatavarti, R.
Chan, R.
Miyamoto, H.
Adams, J. G. J.
Elarde, V. C.
Grimsley, J.
description The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.
doi_str_mv 10.1109/JPHOTOV.2012.2215580
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2012_2215580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6301673</ieee_id><sourcerecordid>10_1109_JPHOTOV_2012_2215580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRsNRu3OqifyDxvTfJfCylqFVaUmh1O8xMXiASiUwE8d-b0ujd3Ls5F44Qtwg5Iti7l926OlRvOQFSToRlaeBMzMahMlmAPP_b0uClWAzDO4xRUCpVzMT1tg9tx8t93_m03PXfnK7EReO7gRdTz8Xr48Nhtc421dPz6n6TRdL4lUk0lksO7A0ZshaDsUDS6BC1hVgXkpRuNPs6osIQCSPFEKTSaGr2Uc5FcfqNqR-GxI37TO2HTz8OwR3V3KTmjmpuUhuxmxPWMvM_oiSg0lL-Ah0rSOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mobile Solar Power</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Trautz, K. M. ; Jenkins, P. P. ; Walters, R. J. ; Scheiman, D. ; Hoheisel, R. ; Tatavarti, R. ; Chan, R. ; Miyamoto, H. ; Adams, J. G. J. ; Elarde, V. C. ; Grimsley, J.</creator><creatorcontrib>Trautz, K. M. ; Jenkins, P. P. ; Walters, R. J. ; Scheiman, D. ; Hoheisel, R. ; Tatavarti, R. ; Chan, R. ; Miyamoto, H. ; Adams, J. G. J. ; Elarde, V. C. ; Grimsley, J.</creatorcontrib><description>The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2012.2215580</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Batteries ; Battery recharger ; epitaxial lift off ; Gallium arsenide ; Lighting ; Mobile communication ; Photovoltaic cells ; Photovoltaic systems ; solar cell ; solar panel</subject><ispartof>IEEE journal of photovoltaics, 2013-01, Vol.3 (1), p.535-541</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</citedby><cites>FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6301673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Trautz, K. M.</creatorcontrib><creatorcontrib>Jenkins, P. P.</creatorcontrib><creatorcontrib>Walters, R. J.</creatorcontrib><creatorcontrib>Scheiman, D.</creatorcontrib><creatorcontrib>Hoheisel, R.</creatorcontrib><creatorcontrib>Tatavarti, R.</creatorcontrib><creatorcontrib>Chan, R.</creatorcontrib><creatorcontrib>Miyamoto, H.</creatorcontrib><creatorcontrib>Adams, J. G. J.</creatorcontrib><creatorcontrib>Elarde, V. C.</creatorcontrib><creatorcontrib>Grimsley, J.</creatorcontrib><title>Mobile Solar Power</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.</description><subject>Atmospheric modeling</subject><subject>Batteries</subject><subject>Battery recharger</subject><subject>epitaxial lift off</subject><subject>Gallium arsenide</subject><subject>Lighting</subject><subject>Mobile communication</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>solar cell</subject><subject>solar panel</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRsNRu3OqifyDxvTfJfCylqFVaUmh1O8xMXiASiUwE8d-b0ujd3Ls5F44Qtwg5Iti7l926OlRvOQFSToRlaeBMzMahMlmAPP_b0uClWAzDO4xRUCpVzMT1tg9tx8t93_m03PXfnK7EReO7gRdTz8Xr48Nhtc421dPz6n6TRdL4lUk0lksO7A0ZshaDsUDS6BC1hVgXkpRuNPs6osIQCSPFEKTSaGr2Uc5FcfqNqR-GxI37TO2HTz8OwR3V3KTmjmpuUhuxmxPWMvM_oiSg0lL-Ah0rSOU</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Trautz, K. M.</creator><creator>Jenkins, P. P.</creator><creator>Walters, R. J.</creator><creator>Scheiman, D.</creator><creator>Hoheisel, R.</creator><creator>Tatavarti, R.</creator><creator>Chan, R.</creator><creator>Miyamoto, H.</creator><creator>Adams, J. G. J.</creator><creator>Elarde, V. C.</creator><creator>Grimsley, J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201301</creationdate><title>Mobile Solar Power</title><author>Trautz, K. M. ; Jenkins, P. P. ; Walters, R. J. ; Scheiman, D. ; Hoheisel, R. ; Tatavarti, R. ; Chan, R. ; Miyamoto, H. ; Adams, J. G. J. ; Elarde, V. C. ; Grimsley, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric modeling</topic><topic>Batteries</topic><topic>Battery recharger</topic><topic>epitaxial lift off</topic><topic>Gallium arsenide</topic><topic>Lighting</topic><topic>Mobile communication</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>solar cell</topic><topic>solar panel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trautz, K. M.</creatorcontrib><creatorcontrib>Jenkins, P. P.</creatorcontrib><creatorcontrib>Walters, R. J.</creatorcontrib><creatorcontrib>Scheiman, D.</creatorcontrib><creatorcontrib>Hoheisel, R.</creatorcontrib><creatorcontrib>Tatavarti, R.</creatorcontrib><creatorcontrib>Chan, R.</creatorcontrib><creatorcontrib>Miyamoto, H.</creatorcontrib><creatorcontrib>Adams, J. G. J.</creatorcontrib><creatorcontrib>Elarde, V. C.</creatorcontrib><creatorcontrib>Grimsley, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trautz, K. M.</au><au>Jenkins, P. P.</au><au>Walters, R. J.</au><au>Scheiman, D.</au><au>Hoheisel, R.</au><au>Tatavarti, R.</au><au>Chan, R.</au><au>Miyamoto, H.</au><au>Adams, J. G. J.</au><au>Elarde, V. C.</au><au>Grimsley, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Solar Power</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2013-01</date><risdate>2013</risdate><volume>3</volume><issue>1</issue><spage>535</spage><epage>541</epage><pages>535-541</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.</abstract><pub>IEEE</pub><doi>10.1109/JPHOTOV.2012.2215580</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2013-01, Vol.3 (1), p.535-541
issn 2156-3381
2156-3403
language eng
recordid cdi_crossref_primary_10_1109_JPHOTOV_2012_2215580
source IEEE Electronic Library (IEL) Journals
subjects Atmospheric modeling
Batteries
Battery recharger
epitaxial lift off
Gallium arsenide
Lighting
Mobile communication
Photovoltaic cells
Photovoltaic systems
solar cell
solar panel
title Mobile Solar Power
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Solar%20Power&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Trautz,%20K.%20M.&rft.date=2013-01&rft.volume=3&rft.issue=1&rft.spage=535&rft.epage=541&rft.pages=535-541&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2012.2215580&rft_dat=%3Ccrossref_ieee_%3E10_1109_JPHOTOV_2012_2215580%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6301673&rfr_iscdi=true