Loading…
Mobile Solar Power
The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project,...
Saved in:
Published in: | IEEE journal of photovoltaics 2013-01, Vol.3 (1), p.535-541 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3 |
container_end_page | 541 |
container_issue | 1 |
container_start_page | 535 |
container_title | IEEE journal of photovoltaics |
container_volume | 3 |
creator | Trautz, K. M. Jenkins, P. P. Walters, R. J. Scheiman, D. Hoheisel, R. Tatavarti, R. Chan, R. Miyamoto, H. Adams, J. G. J. Elarde, V. C. Grimsley, J. |
description | The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development. |
doi_str_mv | 10.1109/JPHOTOV.2012.2215580 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2012_2215580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6301673</ieee_id><sourcerecordid>10_1109_JPHOTOV_2012_2215580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRsNRu3OqifyDxvTfJfCylqFVaUmh1O8xMXiASiUwE8d-b0ujd3Ls5F44Qtwg5Iti7l926OlRvOQFSToRlaeBMzMahMlmAPP_b0uClWAzDO4xRUCpVzMT1tg9tx8t93_m03PXfnK7EReO7gRdTz8Xr48Nhtc421dPz6n6TRdL4lUk0lksO7A0ZshaDsUDS6BC1hVgXkpRuNPs6osIQCSPFEKTSaGr2Uc5FcfqNqR-GxI37TO2HTz8OwR3V3KTmjmpuUhuxmxPWMvM_oiSg0lL-Ah0rSOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mobile Solar Power</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Trautz, K. M. ; Jenkins, P. P. ; Walters, R. J. ; Scheiman, D. ; Hoheisel, R. ; Tatavarti, R. ; Chan, R. ; Miyamoto, H. ; Adams, J. G. J. ; Elarde, V. C. ; Grimsley, J.</creator><creatorcontrib>Trautz, K. M. ; Jenkins, P. P. ; Walters, R. J. ; Scheiman, D. ; Hoheisel, R. ; Tatavarti, R. ; Chan, R. ; Miyamoto, H. ; Adams, J. G. J. ; Elarde, V. C. ; Grimsley, J.</creatorcontrib><description>The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2012.2215580</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Batteries ; Battery recharger ; epitaxial lift off ; Gallium arsenide ; Lighting ; Mobile communication ; Photovoltaic cells ; Photovoltaic systems ; solar cell ; solar panel</subject><ispartof>IEEE journal of photovoltaics, 2013-01, Vol.3 (1), p.535-541</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</citedby><cites>FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6301673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Trautz, K. M.</creatorcontrib><creatorcontrib>Jenkins, P. P.</creatorcontrib><creatorcontrib>Walters, R. J.</creatorcontrib><creatorcontrib>Scheiman, D.</creatorcontrib><creatorcontrib>Hoheisel, R.</creatorcontrib><creatorcontrib>Tatavarti, R.</creatorcontrib><creatorcontrib>Chan, R.</creatorcontrib><creatorcontrib>Miyamoto, H.</creatorcontrib><creatorcontrib>Adams, J. G. J.</creatorcontrib><creatorcontrib>Elarde, V. C.</creatorcontrib><creatorcontrib>Grimsley, J.</creatorcontrib><title>Mobile Solar Power</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.</description><subject>Atmospheric modeling</subject><subject>Batteries</subject><subject>Battery recharger</subject><subject>epitaxial lift off</subject><subject>Gallium arsenide</subject><subject>Lighting</subject><subject>Mobile communication</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>solar cell</subject><subject>solar panel</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRsNRu3OqifyDxvTfJfCylqFVaUmh1O8xMXiASiUwE8d-b0ujd3Ls5F44Qtwg5Iti7l926OlRvOQFSToRlaeBMzMahMlmAPP_b0uClWAzDO4xRUCpVzMT1tg9tx8t93_m03PXfnK7EReO7gRdTz8Xr48Nhtc421dPz6n6TRdL4lUk0lksO7A0ZshaDsUDS6BC1hVgXkpRuNPs6osIQCSPFEKTSaGr2Uc5FcfqNqR-GxI37TO2HTz8OwR3V3KTmjmpuUhuxmxPWMvM_oiSg0lL-Ah0rSOU</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Trautz, K. M.</creator><creator>Jenkins, P. P.</creator><creator>Walters, R. J.</creator><creator>Scheiman, D.</creator><creator>Hoheisel, R.</creator><creator>Tatavarti, R.</creator><creator>Chan, R.</creator><creator>Miyamoto, H.</creator><creator>Adams, J. G. J.</creator><creator>Elarde, V. C.</creator><creator>Grimsley, J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201301</creationdate><title>Mobile Solar Power</title><author>Trautz, K. M. ; Jenkins, P. P. ; Walters, R. J. ; Scheiman, D. ; Hoheisel, R. ; Tatavarti, R. ; Chan, R. ; Miyamoto, H. ; Adams, J. G. J. ; Elarde, V. C. ; Grimsley, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric modeling</topic><topic>Batteries</topic><topic>Battery recharger</topic><topic>epitaxial lift off</topic><topic>Gallium arsenide</topic><topic>Lighting</topic><topic>Mobile communication</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>solar cell</topic><topic>solar panel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trautz, K. M.</creatorcontrib><creatorcontrib>Jenkins, P. P.</creatorcontrib><creatorcontrib>Walters, R. J.</creatorcontrib><creatorcontrib>Scheiman, D.</creatorcontrib><creatorcontrib>Hoheisel, R.</creatorcontrib><creatorcontrib>Tatavarti, R.</creatorcontrib><creatorcontrib>Chan, R.</creatorcontrib><creatorcontrib>Miyamoto, H.</creatorcontrib><creatorcontrib>Adams, J. G. J.</creatorcontrib><creatorcontrib>Elarde, V. C.</creatorcontrib><creatorcontrib>Grimsley, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trautz, K. M.</au><au>Jenkins, P. P.</au><au>Walters, R. J.</au><au>Scheiman, D.</au><au>Hoheisel, R.</au><au>Tatavarti, R.</au><au>Chan, R.</au><au>Miyamoto, H.</au><au>Adams, J. G. J.</au><au>Elarde, V. C.</au><au>Grimsley, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Solar Power</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2013-01</date><risdate>2013</risdate><volume>3</volume><issue>1</issue><spage>535</spage><epage>541</epage><pages>535-541</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>The military's need to reduce both fuel and battery resupply is a real-time requirement for increasing combat effectiveness and decreasing vulnerability. Mobile photovoltaics (PV) is a technology that can address these needs by leveraging emerging, flexible space PV technology. In this project, the development and production of a semirigid, lightweight, efficient solar blanket with the ability to mount on, or stow in, a backpack and recharge a high-capacity rechargeable lithium-ion battery was undertaken. The 19% efficient blanket consists of a 10 × 3 solar array of 20 cm 2 and single-junction epitaxial lift-off solar cells, which have an efficiency of ~22% under AM1.5G illumination. A power-conditioning module was also developed to interface the solar panel to the battery. Thirteen systems were outfitted during a Limited Objective Experiment-1 in February 2012, and based on the results, a second version of the system is in development.</abstract><pub>IEEE</pub><doi>10.1109/JPHOTOV.2012.2215580</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2013-01, Vol.3 (1), p.535-541 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOTOV_2012_2215580 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Atmospheric modeling Batteries Battery recharger epitaxial lift off Gallium arsenide Lighting Mobile communication Photovoltaic cells Photovoltaic systems solar cell solar panel |
title | Mobile Solar Power |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Solar%20Power&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Trautz,%20K.%20M.&rft.date=2013-01&rft.volume=3&rft.issue=1&rft.spage=535&rft.epage=541&rft.pages=535-541&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2012.2215580&rft_dat=%3Ccrossref_ieee_%3E10_1109_JPHOTOV_2012_2215580%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271t-3189e5ebea8282991b8902387bc790cd43267f7eadc161bc21c2cbb36718deac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6301673&rfr_iscdi=true |