Loading…
Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics
Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In th...
Saved in:
Published in: | IEEE journal of photovoltaics 2016-11, Vol.6 (6), p.1654-1662 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303 |
container_end_page | 1662 |
container_issue | 6 |
container_start_page | 1654 |
container_title | IEEE journal of photovoltaics |
container_volume | 6 |
creator | Nogay, Gizem Seif, Johannes Peter Riesen, Yannick Tomasi, Andrea Jeangros, Quentin Wyrsch, Nicolas Haug, Franz-Josef De Wolf, Stefaan Ballif, Christophe |
description | Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. |
doi_str_mv | 10.1109/JPHOTOV.2016.2604574 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2016_2604574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7576721</ieee_id><sourcerecordid>4225518251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhhdRULRPoBcBr7dmNtns9lLWQ5VihVZvl5jOYkq6qZNU6Qv43EZanZs5ff8M_Fl2AXwIwEdXj8_j6Xz6Oiw4qGGhuCwreZCdFFCqXEguDv9qUcNxNghhyVMoXiolT7LvJ917Q9sQtXO2Rzazzhrfs0YTWSTWeOfQRE-BdZ7-12OMSH656U20qZ15pxOLzgWm-wV7WK21iSxtJv4rn-NqjaTjhpDd4Kc1yJp3TYlAsiFaE86yo067gIN9Ps1e7m7nzTifTO8fmutJboQqY250LTvEwoCu4Q0BymIkO1VIvtBp3lVGdJKPFqCgTIReKF5XulZ6hGBKwcVpdrm7uyb_scEQ26XfUJ9etlALkFLVskqU3FGGfAiEXbsmu9K0bYG3v6a3e9PbX9PbvelJdr6TWUT8l1RlpaoCxA_caoD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831446847</pqid></control><display><type>article</type><title>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Nogay, Gizem ; Seif, Johannes Peter ; Riesen, Yannick ; Tomasi, Andrea ; Jeangros, Quentin ; Wyrsch, Nicolas ; Haug, Franz-Josef ; De Wolf, Stefaan ; Ballif, Christophe</creator><creatorcontrib>Nogay, Gizem ; Seif, Johannes Peter ; Riesen, Yannick ; Tomasi, Andrea ; Jeangros, Quentin ; Wyrsch, Nicolas ; Haug, Franz-Josef ; De Wolf, Stefaan ; Ballif, Christophe</creatorcontrib><description>Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2016.2604574</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Carrier transport ; Contact resistance ; contact resistivity ; Heterojunctions ; nanocrystalline silicon ; Photovoltaic cells ; Schottky barrier ; Silicon ; silicon heterojunction (SHJ) ; solar cells ; Temperature dependence</subject><ispartof>IEEE journal of photovoltaics, 2016-11, Vol.6 (6), p.1654-1662</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</citedby><cites>FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7576721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nogay, Gizem</creatorcontrib><creatorcontrib>Seif, Johannes Peter</creatorcontrib><creatorcontrib>Riesen, Yannick</creatorcontrib><creatorcontrib>Tomasi, Andrea</creatorcontrib><creatorcontrib>Jeangros, Quentin</creatorcontrib><creatorcontrib>Wyrsch, Nicolas</creatorcontrib><creatorcontrib>Haug, Franz-Josef</creatorcontrib><creatorcontrib>De Wolf, Stefaan</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><title>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.</description><subject>Carrier transport</subject><subject>Contact resistance</subject><subject>contact resistivity</subject><subject>Heterojunctions</subject><subject>nanocrystalline silicon</subject><subject>Photovoltaic cells</subject><subject>Schottky barrier</subject><subject>Silicon</subject><subject>silicon heterojunction (SHJ)</subject><subject>solar cells</subject><subject>Temperature dependence</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhhdRULRPoBcBr7dmNtns9lLWQ5VihVZvl5jOYkq6qZNU6Qv43EZanZs5ff8M_Fl2AXwIwEdXj8_j6Xz6Oiw4qGGhuCwreZCdFFCqXEguDv9qUcNxNghhyVMoXiolT7LvJ917Q9sQtXO2Rzazzhrfs0YTWSTWeOfQRE-BdZ7-12OMSH656U20qZ15pxOLzgWm-wV7WK21iSxtJv4rn-NqjaTjhpDd4Kc1yJp3TYlAsiFaE86yo067gIN9Ps1e7m7nzTifTO8fmutJboQqY250LTvEwoCu4Q0BymIkO1VIvtBp3lVGdJKPFqCgTIReKF5XulZ6hGBKwcVpdrm7uyb_scEQ26XfUJ9etlALkFLVskqU3FGGfAiEXbsmu9K0bYG3v6a3e9PbX9PbvelJdr6TWUT8l1RlpaoCxA_caoD1</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Nogay, Gizem</creator><creator>Seif, Johannes Peter</creator><creator>Riesen, Yannick</creator><creator>Tomasi, Andrea</creator><creator>Jeangros, Quentin</creator><creator>Wyrsch, Nicolas</creator><creator>Haug, Franz-Josef</creator><creator>De Wolf, Stefaan</creator><creator>Ballif, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20161101</creationdate><title>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</title><author>Nogay, Gizem ; Seif, Johannes Peter ; Riesen, Yannick ; Tomasi, Andrea ; Jeangros, Quentin ; Wyrsch, Nicolas ; Haug, Franz-Josef ; De Wolf, Stefaan ; Ballif, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carrier transport</topic><topic>Contact resistance</topic><topic>contact resistivity</topic><topic>Heterojunctions</topic><topic>nanocrystalline silicon</topic><topic>Photovoltaic cells</topic><topic>Schottky barrier</topic><topic>Silicon</topic><topic>silicon heterojunction (SHJ)</topic><topic>solar cells</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogay, Gizem</creatorcontrib><creatorcontrib>Seif, Johannes Peter</creatorcontrib><creatorcontrib>Riesen, Yannick</creatorcontrib><creatorcontrib>Tomasi, Andrea</creatorcontrib><creatorcontrib>Jeangros, Quentin</creatorcontrib><creatorcontrib>Wyrsch, Nicolas</creatorcontrib><creatorcontrib>Haug, Franz-Josef</creatorcontrib><creatorcontrib>De Wolf, Stefaan</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogay, Gizem</au><au>Seif, Johannes Peter</au><au>Riesen, Yannick</au><au>Tomasi, Andrea</au><au>Jeangros, Quentin</au><au>Wyrsch, Nicolas</au><au>Haug, Franz-Josef</au><au>De Wolf, Stefaan</au><au>Ballif, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>6</volume><issue>6</issue><spage>1654</spage><epage>1662</epage><pages>1654-1662</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2016.2604574</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2016-11, Vol.6 (6), p.1654-1662 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOTOV_2016_2604574 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Carrier transport Contact resistance contact resistivity Heterojunctions nanocrystalline silicon Photovoltaic cells Schottky barrier Silicon silicon heterojunction (SHJ) solar cells Temperature dependence |
title | Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20Silicon%20Carrier%20Collectors%20for%20Silicon%20Heterojunction%20Solar%20Cells%20and%20Impact%20on%20Low-Temperature%20Device%20Characteristics&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Nogay,%20Gizem&rft.date=2016-11-01&rft.volume=6&rft.issue=6&rft.spage=1654&rft.epage=1662&rft.pages=1654-1662&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2016.2604574&rft_dat=%3Cproquest_cross%3E4225518251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831446847&rft_id=info:pmid/&rft_ieee_id=7576721&rfr_iscdi=true |