Loading…

Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2016-11, Vol.6 (6), p.1654-1662
Main Authors: Nogay, Gizem, Seif, Johannes Peter, Riesen, Yannick, Tomasi, Andrea, Jeangros, Quentin, Wyrsch, Nicolas, Haug, Franz-Josef, De Wolf, Stefaan, Ballif, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303
cites cdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303
container_end_page 1662
container_issue 6
container_start_page 1654
container_title IEEE journal of photovoltaics
container_volume 6
creator Nogay, Gizem
Seif, Johannes Peter
Riesen, Yannick
Tomasi, Andrea
Jeangros, Quentin
Wyrsch, Nicolas
Haug, Franz-Josef
De Wolf, Stefaan
Ballif, Christophe
description Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.
doi_str_mv 10.1109/JPHOTOV.2016.2604574
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2016_2604574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7576721</ieee_id><sourcerecordid>4225518251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhhdRULRPoBcBr7dmNtns9lLWQ5VihVZvl5jOYkq6qZNU6Qv43EZanZs5ff8M_Fl2AXwIwEdXj8_j6Xz6Oiw4qGGhuCwreZCdFFCqXEguDv9qUcNxNghhyVMoXiolT7LvJ917Q9sQtXO2Rzazzhrfs0YTWSTWeOfQRE-BdZ7-12OMSH656U20qZ15pxOLzgWm-wV7WK21iSxtJv4rn-NqjaTjhpDd4Kc1yJp3TYlAsiFaE86yo067gIN9Ps1e7m7nzTifTO8fmutJboQqY250LTvEwoCu4Q0BymIkO1VIvtBp3lVGdJKPFqCgTIReKF5XulZ6hGBKwcVpdrm7uyb_scEQ26XfUJ9etlALkFLVskqU3FGGfAiEXbsmu9K0bYG3v6a3e9PbX9PbvelJdr6TWUT8l1RlpaoCxA_caoD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831446847</pqid></control><display><type>article</type><title>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Nogay, Gizem ; Seif, Johannes Peter ; Riesen, Yannick ; Tomasi, Andrea ; Jeangros, Quentin ; Wyrsch, Nicolas ; Haug, Franz-Josef ; De Wolf, Stefaan ; Ballif, Christophe</creator><creatorcontrib>Nogay, Gizem ; Seif, Johannes Peter ; Riesen, Yannick ; Tomasi, Andrea ; Jeangros, Quentin ; Wyrsch, Nicolas ; Haug, Franz-Josef ; De Wolf, Stefaan ; Ballif, Christophe</creatorcontrib><description>Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2016.2604574</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Carrier transport ; Contact resistance ; contact resistivity ; Heterojunctions ; nanocrystalline silicon ; Photovoltaic cells ; Schottky barrier ; Silicon ; silicon heterojunction (SHJ) ; solar cells ; Temperature dependence</subject><ispartof>IEEE journal of photovoltaics, 2016-11, Vol.6 (6), p.1654-1662</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</citedby><cites>FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7576721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nogay, Gizem</creatorcontrib><creatorcontrib>Seif, Johannes Peter</creatorcontrib><creatorcontrib>Riesen, Yannick</creatorcontrib><creatorcontrib>Tomasi, Andrea</creatorcontrib><creatorcontrib>Jeangros, Quentin</creatorcontrib><creatorcontrib>Wyrsch, Nicolas</creatorcontrib><creatorcontrib>Haug, Franz-Josef</creatorcontrib><creatorcontrib>De Wolf, Stefaan</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><title>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.</description><subject>Carrier transport</subject><subject>Contact resistance</subject><subject>contact resistivity</subject><subject>Heterojunctions</subject><subject>nanocrystalline silicon</subject><subject>Photovoltaic cells</subject><subject>Schottky barrier</subject><subject>Silicon</subject><subject>silicon heterojunction (SHJ)</subject><subject>solar cells</subject><subject>Temperature dependence</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKAzEQhhdRULRPoBcBr7dmNtns9lLWQ5VihVZvl5jOYkq6qZNU6Qv43EZanZs5ff8M_Fl2AXwIwEdXj8_j6Xz6Oiw4qGGhuCwreZCdFFCqXEguDv9qUcNxNghhyVMoXiolT7LvJ917Q9sQtXO2Rzazzhrfs0YTWSTWeOfQRE-BdZ7-12OMSH656U20qZ15pxOLzgWm-wV7WK21iSxtJv4rn-NqjaTjhpDd4Kc1yJp3TYlAsiFaE86yo067gIN9Ps1e7m7nzTifTO8fmutJboQqY250LTvEwoCu4Q0BymIkO1VIvtBp3lVGdJKPFqCgTIReKF5XulZ6hGBKwcVpdrm7uyb_scEQ26XfUJ9etlALkFLVskqU3FGGfAiEXbsmu9K0bYG3v6a3e9PbX9PbvelJdr6TWUT8l1RlpaoCxA_caoD1</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Nogay, Gizem</creator><creator>Seif, Johannes Peter</creator><creator>Riesen, Yannick</creator><creator>Tomasi, Andrea</creator><creator>Jeangros, Quentin</creator><creator>Wyrsch, Nicolas</creator><creator>Haug, Franz-Josef</creator><creator>De Wolf, Stefaan</creator><creator>Ballif, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20161101</creationdate><title>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</title><author>Nogay, Gizem ; Seif, Johannes Peter ; Riesen, Yannick ; Tomasi, Andrea ; Jeangros, Quentin ; Wyrsch, Nicolas ; Haug, Franz-Josef ; De Wolf, Stefaan ; Ballif, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carrier transport</topic><topic>Contact resistance</topic><topic>contact resistivity</topic><topic>Heterojunctions</topic><topic>nanocrystalline silicon</topic><topic>Photovoltaic cells</topic><topic>Schottky barrier</topic><topic>Silicon</topic><topic>silicon heterojunction (SHJ)</topic><topic>solar cells</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogay, Gizem</creatorcontrib><creatorcontrib>Seif, Johannes Peter</creatorcontrib><creatorcontrib>Riesen, Yannick</creatorcontrib><creatorcontrib>Tomasi, Andrea</creatorcontrib><creatorcontrib>Jeangros, Quentin</creatorcontrib><creatorcontrib>Wyrsch, Nicolas</creatorcontrib><creatorcontrib>Haug, Franz-Josef</creatorcontrib><creatorcontrib>De Wolf, Stefaan</creatorcontrib><creatorcontrib>Ballif, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogay, Gizem</au><au>Seif, Johannes Peter</au><au>Riesen, Yannick</au><au>Tomasi, Andrea</au><au>Jeangros, Quentin</au><au>Wyrsch, Nicolas</au><au>Haug, Franz-Josef</au><au>De Wolf, Stefaan</au><au>Ballif, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>6</volume><issue>6</issue><spage>1654</spage><epage>1662</epage><pages>1654-1662</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2016.2604574</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2016-11, Vol.6 (6), p.1654-1662
issn 2156-3381
2156-3403
language eng
recordid cdi_crossref_primary_10_1109_JPHOTOV_2016_2604574
source IEEE Electronic Library (IEL) Journals
subjects Carrier transport
Contact resistance
contact resistivity
Heterojunctions
nanocrystalline silicon
Photovoltaic cells
Schottky barrier
Silicon
silicon heterojunction (SHJ)
solar cells
Temperature dependence
title Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20Silicon%20Carrier%20Collectors%20for%20Silicon%20Heterojunction%20Solar%20Cells%20and%20Impact%20on%20Low-Temperature%20Device%20Characteristics&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Nogay,%20Gizem&rft.date=2016-11-01&rft.volume=6&rft.issue=6&rft.spage=1654&rft.epage=1662&rft.pages=1654-1662&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2016.2604574&rft_dat=%3Cproquest_cross%3E4225518251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-ca84fee2c1a81be115294f6240dafeef7c3f409d1615a81ad6087a86a9e1c5303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831446847&rft_id=info:pmid/&rft_ieee_id=7576721&rfr_iscdi=true