Loading…
Multi-Image Encryption Based on Compressed Sensing and Deep Learning in Optical Gyrator Domain
In this paper, a multi-image encryption scheme based on compressed sensing (CS) and deep learning in the optical gyrator domain is proposed. Firstly, multiple plaintext images are compressed by CS to obtain multiple measurements, and then the pixels of each measurement are scrambled by using a chaot...
Saved in:
Published in: | IEEE photonics journal 2021-06, Vol.13 (3), p.1-16 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63 |
container_end_page | 16 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 13 |
creator | Ni, Renjie Wang, Fan Wang, Jun Hu, Yuhen |
description | In this paper, a multi-image encryption scheme based on compressed sensing (CS) and deep learning in the optical gyrator domain is proposed. Firstly, multiple plaintext images are compressed by CS to obtain multiple measurements, and then the pixels of each measurement are scrambled by using a chaotic system. Secondly, the scrambled measurements are combined into a matrix and diffused by XOR operation with a chaotic matrix. Finally, the diffused matrix is encoded with a random phase and an optical gyrator transform to obtain a complex-valued matrix, and the amplitude of the complex-valued matrix is taken as the ciphertext. In decrypt, plaintext images are reconstructed from the CS measurements by a neural network, which achieves high reconstruction speed and quality compared with the traditional algorithm. Especially, the data amount of plaintext images can be compressed by up to 8 times while achieving high decryption quality. To our best knowledge, CS reconstruction algorithms based on deep learning is firstly used for image encryption. Moreover, the proposed scheme is highly robust against occlusion, noise, and chosen-plaintext attack. |
doi_str_mv | 10.1109/JPHOT.2021.3076480 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2021_3076480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422288</ieee_id><doaj_id>oai_doaj_org_article_cb668ca10c1e417ea7f7ccfd3dcacdd6</doaj_id><sourcerecordid>2530110796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63</originalsourceid><addsrcrecordid>eNo9Uctu2zAQFIoUyKP5gfRCIGc5fFM6tk6aOHDhAkmuIVbU0pBhkwopH_z3leLAp90d7MwOdorihtEZY7S-e_73tHqdccrZTFCjZUW_FReslqKkWpqzU6_UeXGZ84ZSXTNVXxTvf_fboSsXO1gjeQguHfqhi4H8howtGZt53PUJ8zS9YMhdWBMILblH7MkSIYUJ6QJZjTwHW_J4SDDERO7jDrrwo_juYZvx-qteFW9_Hl7nT-Vy9biY_1qWTlI1lEY2FDVDlFVjhFKVkr7iSjaogCqKTtbeuwa0F0ZKLVhjqK951QjuhUQtrorFUbeNsLF96naQDjZCZz-BmNYW0mhwi9Y1WlcOGHUMJTMIxhvnfCtaB65tJ63bo1af4sce82A3cZ_CaN9yJej4b1NPW_y45VLMOaE_XWXUTpnYz0zslIn9ymQk_TySOkQ8EWrJOa8q8R9PdIgn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530110796</pqid></control><display><type>article</type><title>Multi-Image Encryption Based on Compressed Sensing and Deep Learning in Optical Gyrator Domain</title><source>IEEE Xplore Open Access Journals</source><creator>Ni, Renjie ; Wang, Fan ; Wang, Jun ; Hu, Yuhen</creator><creatorcontrib>Ni, Renjie ; Wang, Fan ; Wang, Jun ; Hu, Yuhen</creatorcontrib><description>In this paper, a multi-image encryption scheme based on compressed sensing (CS) and deep learning in the optical gyrator domain is proposed. Firstly, multiple plaintext images are compressed by CS to obtain multiple measurements, and then the pixels of each measurement are scrambled by using a chaotic system. Secondly, the scrambled measurements are combined into a matrix and diffused by XOR operation with a chaotic matrix. Finally, the diffused matrix is encoded with a random phase and an optical gyrator transform to obtain a complex-valued matrix, and the amplitude of the complex-valued matrix is taken as the ciphertext. In decrypt, plaintext images are reconstructed from the CS measurements by a neural network, which achieves high reconstruction speed and quality compared with the traditional algorithm. Especially, the data amount of plaintext images can be compressed by up to 8 times while achieving high decryption quality. To our best knowledge, CS reconstruction algorithms based on deep learning is firstly used for image encryption. Moreover, the proposed scheme is highly robust against occlusion, noise, and chosen-plaintext attack.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2021.3076480</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Chaos theory ; compressed sensing ; Deep learning ; Domains ; Encryption ; Gyrators ; Image coding ; Image reconstruction ; Machine learning ; Multi-image encryption ; Neural networks ; Occlusion ; Optical diffraction ; optical gyrator transform ; Optical imaging ; Optical sensors</subject><ispartof>IEEE photonics journal, 2021-06, Vol.13 (3), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63</citedby><cites>FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63</cites><orcidid>0000-0003-3427-0677 ; 0000-0003-1911-4676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422288$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27607,27898,27899,54905</link.rule.ids></links><search><creatorcontrib>Ni, Renjie</creatorcontrib><creatorcontrib>Wang, Fan</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Hu, Yuhen</creatorcontrib><title>Multi-Image Encryption Based on Compressed Sensing and Deep Learning in Optical Gyrator Domain</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>In this paper, a multi-image encryption scheme based on compressed sensing (CS) and deep learning in the optical gyrator domain is proposed. Firstly, multiple plaintext images are compressed by CS to obtain multiple measurements, and then the pixels of each measurement are scrambled by using a chaotic system. Secondly, the scrambled measurements are combined into a matrix and diffused by XOR operation with a chaotic matrix. Finally, the diffused matrix is encoded with a random phase and an optical gyrator transform to obtain a complex-valued matrix, and the amplitude of the complex-valued matrix is taken as the ciphertext. In decrypt, plaintext images are reconstructed from the CS measurements by a neural network, which achieves high reconstruction speed and quality compared with the traditional algorithm. Especially, the data amount of plaintext images can be compressed by up to 8 times while achieving high decryption quality. To our best knowledge, CS reconstruction algorithms based on deep learning is firstly used for image encryption. Moreover, the proposed scheme is highly robust against occlusion, noise, and chosen-plaintext attack.</description><subject>Algorithms</subject><subject>Chaos theory</subject><subject>compressed sensing</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Encryption</subject><subject>Gyrators</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Multi-image encryption</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Optical diffraction</subject><subject>optical gyrator transform</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9Uctu2zAQFIoUyKP5gfRCIGc5fFM6tk6aOHDhAkmuIVbU0pBhkwopH_z3leLAp90d7MwOdorihtEZY7S-e_73tHqdccrZTFCjZUW_FReslqKkWpqzU6_UeXGZ84ZSXTNVXxTvf_fboSsXO1gjeQguHfqhi4H8howtGZt53PUJ8zS9YMhdWBMILblH7MkSIYUJ6QJZjTwHW_J4SDDERO7jDrrwo_juYZvx-qteFW9_Hl7nT-Vy9biY_1qWTlI1lEY2FDVDlFVjhFKVkr7iSjaogCqKTtbeuwa0F0ZKLVhjqK951QjuhUQtrorFUbeNsLF96naQDjZCZz-BmNYW0mhwi9Y1WlcOGHUMJTMIxhvnfCtaB65tJ63bo1af4sce82A3cZ_CaN9yJej4b1NPW_y45VLMOaE_XWXUTpnYz0zslIn9ymQk_TySOkQ8EWrJOa8q8R9PdIgn</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ni, Renjie</creator><creator>Wang, Fan</creator><creator>Wang, Jun</creator><creator>Hu, Yuhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3427-0677</orcidid><orcidid>https://orcid.org/0000-0003-1911-4676</orcidid></search><sort><creationdate>20210601</creationdate><title>Multi-Image Encryption Based on Compressed Sensing and Deep Learning in Optical Gyrator Domain</title><author>Ni, Renjie ; Wang, Fan ; Wang, Jun ; Hu, Yuhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Chaos theory</topic><topic>compressed sensing</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Encryption</topic><topic>Gyrators</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Multi-image encryption</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Optical diffraction</topic><topic>optical gyrator transform</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Renjie</creatorcontrib><creatorcontrib>Wang, Fan</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Hu, Yuhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Renjie</au><au>Wang, Fan</au><au>Wang, Jun</au><au>Hu, Yuhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Image Encryption Based on Compressed Sensing and Deep Learning in Optical Gyrator Domain</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>In this paper, a multi-image encryption scheme based on compressed sensing (CS) and deep learning in the optical gyrator domain is proposed. Firstly, multiple plaintext images are compressed by CS to obtain multiple measurements, and then the pixels of each measurement are scrambled by using a chaotic system. Secondly, the scrambled measurements are combined into a matrix and diffused by XOR operation with a chaotic matrix. Finally, the diffused matrix is encoded with a random phase and an optical gyrator transform to obtain a complex-valued matrix, and the amplitude of the complex-valued matrix is taken as the ciphertext. In decrypt, plaintext images are reconstructed from the CS measurements by a neural network, which achieves high reconstruction speed and quality compared with the traditional algorithm. Especially, the data amount of plaintext images can be compressed by up to 8 times while achieving high decryption quality. To our best knowledge, CS reconstruction algorithms based on deep learning is firstly used for image encryption. Moreover, the proposed scheme is highly robust against occlusion, noise, and chosen-plaintext attack.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2021.3076480</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3427-0677</orcidid><orcidid>https://orcid.org/0000-0003-1911-4676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2021-06, Vol.13 (3), p.1-16 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2021_3076480 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Chaos theory compressed sensing Deep learning Domains Encryption Gyrators Image coding Image reconstruction Machine learning Multi-image encryption Neural networks Occlusion Optical diffraction optical gyrator transform Optical imaging Optical sensors |
title | Multi-Image Encryption Based on Compressed Sensing and Deep Learning in Optical Gyrator Domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T15%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Image%20Encryption%20Based%20on%20Compressed%20Sensing%20and%20Deep%20Learning%20in%20Optical%20Gyrator%20Domain&rft.jtitle=IEEE%20photonics%20journal&rft.au=Ni,%20Renjie&rft.date=2021-06-01&rft.volume=13&rft.issue=3&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2021.3076480&rft_dat=%3Cproquest_cross%3E2530110796%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-74b0e61ee48b7355854f8254be5a050ec49ffcba6f3744631b70f928b32f34e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530110796&rft_id=info:pmid/&rft_ieee_id=9422288&rfr_iscdi=true |