Loading…
High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering
Piston error is the main component of the co-phase errors of segmented telescopes. In this paper, we innovatively performed frequency domain filtering and processing on the focal plane image of the segmented telescopes with mask added, and obtained the image that only reflects the piston error betwe...
Saved in:
Published in: | IEEE photonics journal 2024-12, Vol.16 (6), p.1-6 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1309-b88d632555c9741d6e46d8f24fa932b96953acf1eb36e60eeba3d4a640ec24513 |
container_end_page | 6 |
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 16 |
creator | Li, Dequan Wang, Dong |
description | Piston error is the main component of the co-phase errors of segmented telescopes. In this paper, we innovatively performed frequency domain filtering and processing on the focal plane image of the segmented telescopes with mask added, and obtained the image that only reflects the piston error between each submirror and the reference submirror. The representation of feature image that reflects each submirror's piston error which obtained by this method is the same.Therefore, regardless of the number or the arrangement of submirrors, the single shallow convolutional neural network trained by any of the extracted submirror interference image dataset can be used to achieve high-precision detection of different submirror piston errors.Finally, simulation experiment results show the effectiveness of the proposed method. |
doi_str_mv | 10.1109/JPHOT.2024.3497182 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2024_3497182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10752339</ieee_id><doaj_id>oai_doaj_org_article_7a8fafa8e5484cd2a33a74b68c501e3a</doaj_id><sourcerecordid>oai_doaj_org_article_7a8fafa8e5484cd2a33a74b68c501e3a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1309-b88d632555c9741d6e46d8f24fa932b96953acf1eb36e60eeba3d4a640ec24513</originalsourceid><addsrcrecordid>eNpNkM1OwkAUhRujiYi-gHHRFwDnv52lIgiGBBJx6-R2eluHlA7O4IK3t_zEuDrnntzzLU6S3FMypJTox7fldLEaMsLEkAud0ZxdJD2qBR8QJbLLPy_ldXIT45oQpanUveRz6uqvdBnQuuh8my5d3HUyDsGH9B3b6No69VVn6w22OyzTFTYYrd9i-gyxu7vvScDvH2ztPn3xG3Bd4Jodhq56m1xV0ES8O2s_-ZiMV6PpYL54nY2e5gNLOdGDIs9LxZmU0upM0FKhUGVeMVGB5qzQSksOtqJYcIWKIBbASwFKELRMSMr7yezELT2szTa4DYS98eDMMfChNhB2zjZoMsgrqCBHKXJhSwacQyYKlVtJKHLoWOzEssHHGLD641FiDmub49rmsLY5r92VHk4lh4j_CplknGv-C2CAfEQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering</title><source>IEEE Open Access Journals</source><creator>Li, Dequan ; Wang, Dong</creator><creatorcontrib>Li, Dequan ; Wang, Dong</creatorcontrib><description>Piston error is the main component of the co-phase errors of segmented telescopes. In this paper, we innovatively performed frequency domain filtering and processing on the focal plane image of the segmented telescopes with mask added, and obtained the image that only reflects the piston error between each submirror and the reference submirror. The representation of feature image that reflects each submirror's piston error which obtained by this method is the same.Therefore, regardless of the number or the arrangement of submirrors, the single shallow convolutional neural network trained by any of the extracted submirror interference image dataset can be used to achieve high-precision detection of different submirror piston errors.Finally, simulation experiment results show the effectiveness of the proposed method.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3497182</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive optics ; Feature extraction ; Filtering ; frequency domain filtering ; Frequency-domain analysis ; Mirrors ; Optical diffraction ; Optical filters ; Optical imaging ; Optical reflection ; piston sensing ; Pistons ; Segmented telescope</subject><ispartof>IEEE photonics journal, 2024-12, Vol.16 (6), p.1-6</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1309-b88d632555c9741d6e46d8f24fa932b96953acf1eb36e60eeba3d4a640ec24513</cites><orcidid>0000-0003-0229-5159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10752339$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Dequan</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Piston error is the main component of the co-phase errors of segmented telescopes. In this paper, we innovatively performed frequency domain filtering and processing on the focal plane image of the segmented telescopes with mask added, and obtained the image that only reflects the piston error between each submirror and the reference submirror. The representation of feature image that reflects each submirror's piston error which obtained by this method is the same.Therefore, regardless of the number or the arrangement of submirrors, the single shallow convolutional neural network trained by any of the extracted submirror interference image dataset can be used to achieve high-precision detection of different submirror piston errors.Finally, simulation experiment results show the effectiveness of the proposed method.</description><subject>Adaptive optics</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>frequency domain filtering</subject><subject>Frequency-domain analysis</subject><subject>Mirrors</subject><subject>Optical diffraction</subject><subject>Optical filters</subject><subject>Optical imaging</subject><subject>Optical reflection</subject><subject>piston sensing</subject><subject>Pistons</subject><subject>Segmented telescope</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwkAUhRujiYi-gHHRFwDnv52lIgiGBBJx6-R2eluHlA7O4IK3t_zEuDrnntzzLU6S3FMypJTox7fldLEaMsLEkAud0ZxdJD2qBR8QJbLLPy_ldXIT45oQpanUveRz6uqvdBnQuuh8my5d3HUyDsGH9B3b6No69VVn6w22OyzTFTYYrd9i-gyxu7vvScDvH2ztPn3xG3Bd4Jodhq56m1xV0ES8O2s_-ZiMV6PpYL54nY2e5gNLOdGDIs9LxZmU0upM0FKhUGVeMVGB5qzQSksOtqJYcIWKIBbASwFKELRMSMr7yezELT2szTa4DYS98eDMMfChNhB2zjZoMsgrqCBHKXJhSwacQyYKlVtJKHLoWOzEssHHGLD641FiDmub49rmsLY5r92VHk4lh4j_CplknGv-C2CAfEQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Li, Dequan</creator><creator>Wang, Dong</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0229-5159</orcidid></search><sort><creationdate>202412</creationdate><title>High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering</title><author>Li, Dequan ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1309-b88d632555c9741d6e46d8f24fa932b96953acf1eb36e60eeba3d4a640ec24513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optics</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>frequency domain filtering</topic><topic>Frequency-domain analysis</topic><topic>Mirrors</topic><topic>Optical diffraction</topic><topic>Optical filters</topic><topic>Optical imaging</topic><topic>Optical reflection</topic><topic>piston sensing</topic><topic>Pistons</topic><topic>Segmented telescope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dequan</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dequan</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-12</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Piston error is the main component of the co-phase errors of segmented telescopes. In this paper, we innovatively performed frequency domain filtering and processing on the focal plane image of the segmented telescopes with mask added, and obtained the image that only reflects the piston error between each submirror and the reference submirror. The representation of feature image that reflects each submirror's piston error which obtained by this method is the same.Therefore, regardless of the number or the arrangement of submirrors, the single shallow convolutional neural network trained by any of the extracted submirror interference image dataset can be used to achieve high-precision detection of different submirror piston errors.Finally, simulation experiment results show the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3497182</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0229-5159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2024-12, Vol.16 (6), p.1-6 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2024_3497182 |
source | IEEE Open Access Journals |
subjects | Adaptive optics Feature extraction Filtering frequency domain filtering Frequency-domain analysis Mirrors Optical diffraction Optical filters Optical imaging Optical reflection piston sensing Pistons Segmented telescope |
title | High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Precision%20Piston%20Error%20Sensing%20of%20Segmented%20Telescope%20Based%20on%20Frequency%20Domain%20Filtering&rft.jtitle=IEEE%20photonics%20journal&rft.au=Li,%20Dequan&rft.date=2024-12&rft.volume=16&rft.issue=6&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3497182&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7a8fafa8e5484cd2a33a74b68c501e3a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1309-b88d632555c9741d6e46d8f24fa932b96953acf1eb36e60eeba3d4a640ec24513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10752339&rfr_iscdi=true |