Loading…

Modeling of Nanoscale Devices

We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the tra...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2008-09, Vol.96 (9), p.1511-1550
Main Authors: Anantram, M. P., Lundstrom, Mark S., Nikonov, Dmitri E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053
cites cdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053
container_end_page 1550
container_issue 9
container_start_page 1511
container_title Proceedings of the IEEE
container_volume 96
creator Anantram, M. P.
Lundstrom, Mark S.
Nikonov, Dmitri E.
description We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.
doi_str_mv 10.1109/JPROC.2008.927355
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2008_927355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4618725</ieee_id><sourcerecordid>34436343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</originalsourceid><addsrcrecordid>eNqFkU1LAzEQQIMoWKs_QEQoHtTL1slMkk2OUr-pVkTPIaZZ2bLdrZtW8N-764oHD_U0MLx5h3mM7XMYcg7m7O7xaTIaIoAeGkxJyg3W41LqBFGqTdYD4DoxyM0224lxBgAkFfXY4X01DUVevg2qbPDgyip6V4TBRfjIfYi7bCtzRQx7P7PPXq4un0c3yXhyfTs6HydeKFomzhNOpXEg5GuzkBn3AjN0BlIpnTCQpUTgUk8q0yRSmso0C577KTceQFKfnXTeRV29r0Jc2nkefSgKV4ZqFa0BUiiNoX9JnUpAbRQ25PFakoQgRaJVnq4FOSAaMKSgQY_-oLNqVZfNa6xWqNFobH28g3xdxViHzC7qfO7qz8Zk21j2O5ZtY9kuVnNz0N3kIYRfXiiuU5T0BQh_i64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862829823</pqid></control><display><type>article</type><title>Modeling of Nanoscale Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Anantram, M. P. ; Lundstrom, Mark S. ; Nikonov, Dmitri E.</creator><creatorcontrib>Anantram, M. P. ; Lundstrom, Mark S. ; Nikonov, Dmitri E.</creatorcontrib><description>We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2008.927355</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ballistic transport ; Carbon nanotubes ; Devices ; Diffusion ; Electron transport ; Equations ; Green's function ; Green's function methods ; Mathematical models ; Nanocomposites ; nanoelectronics ; Nanomaterials ; Nanoscale devices ; Nanostructure ; Nanostructures ; Nanotechnology ; Nanowires ; nonequilibrium ; Particle scattering ; phonons ; Power engineering and energy ; Quantum mechanics ; scattering ; semiconductors ; simulation ; transistor ; Transport</subject><ispartof>Proceedings of the IEEE, 2008-09, Vol.96 (9), p.1511-1550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</citedby><cites>FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4618725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Anantram, M. P.</creatorcontrib><creatorcontrib>Lundstrom, Mark S.</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><title>Modeling of Nanoscale Devices</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.</description><subject>Ballistic transport</subject><subject>Carbon nanotubes</subject><subject>Devices</subject><subject>Diffusion</subject><subject>Electron transport</subject><subject>Equations</subject><subject>Green's function</subject><subject>Green's function methods</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>nanoelectronics</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>nonequilibrium</subject><subject>Particle scattering</subject><subject>phonons</subject><subject>Power engineering and energy</subject><subject>Quantum mechanics</subject><subject>scattering</subject><subject>semiconductors</subject><subject>simulation</subject><subject>transistor</subject><subject>Transport</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQQIMoWKs_QEQoHtTL1slMkk2OUr-pVkTPIaZZ2bLdrZtW8N-764oHD_U0MLx5h3mM7XMYcg7m7O7xaTIaIoAeGkxJyg3W41LqBFGqTdYD4DoxyM0224lxBgAkFfXY4X01DUVevg2qbPDgyip6V4TBRfjIfYi7bCtzRQx7P7PPXq4un0c3yXhyfTs6HydeKFomzhNOpXEg5GuzkBn3AjN0BlIpnTCQpUTgUk8q0yRSmso0C577KTceQFKfnXTeRV29r0Jc2nkefSgKV4ZqFa0BUiiNoX9JnUpAbRQ25PFakoQgRaJVnq4FOSAaMKSgQY_-oLNqVZfNa6xWqNFobH28g3xdxViHzC7qfO7qz8Zk21j2O5ZtY9kuVnNz0N3kIYRfXiiuU5T0BQh_i64</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Anantram, M. P.</creator><creator>Lundstrom, Mark S.</creator><creator>Nikonov, Dmitri E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080901</creationdate><title>Modeling of Nanoscale Devices</title><author>Anantram, M. P. ; Lundstrom, Mark S. ; Nikonov, Dmitri E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ballistic transport</topic><topic>Carbon nanotubes</topic><topic>Devices</topic><topic>Diffusion</topic><topic>Electron transport</topic><topic>Equations</topic><topic>Green's function</topic><topic>Green's function methods</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>nanoelectronics</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>nonequilibrium</topic><topic>Particle scattering</topic><topic>phonons</topic><topic>Power engineering and energy</topic><topic>Quantum mechanics</topic><topic>scattering</topic><topic>semiconductors</topic><topic>simulation</topic><topic>transistor</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anantram, M. P.</creatorcontrib><creatorcontrib>Lundstrom, Mark S.</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantram, M. P.</au><au>Lundstrom, Mark S.</au><au>Nikonov, Dmitri E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Nanoscale Devices</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>96</volume><issue>9</issue><spage>1511</spage><epage>1550</epage><pages>1511-1550</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2008.927355</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2008-09, Vol.96 (9), p.1511-1550
issn 0018-9219
1558-2256
language eng
recordid cdi_crossref_primary_10_1109_JPROC_2008_927355
source IEEE Electronic Library (IEL) Journals
subjects Ballistic transport
Carbon nanotubes
Devices
Diffusion
Electron transport
Equations
Green's function
Green's function methods
Mathematical models
Nanocomposites
nanoelectronics
Nanomaterials
Nanoscale devices
Nanostructure
Nanostructures
Nanotechnology
Nanowires
nonequilibrium
Particle scattering
phonons
Power engineering and energy
Quantum mechanics
scattering
semiconductors
simulation
transistor
Transport
title Modeling of Nanoscale Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Nanoscale%20Devices&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Anantram,%20M.%20P.&rft.date=2008-09-01&rft.volume=96&rft.issue=9&rft.spage=1511&rft.epage=1550&rft.pages=1511-1550&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2008.927355&rft_dat=%3Cproquest_cross%3E34436343%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862829823&rft_id=info:pmid/&rft_ieee_id=4618725&rfr_iscdi=true