Loading…
Modeling of Nanoscale Devices
We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the tra...
Saved in:
Published in: | Proceedings of the IEEE 2008-09, Vol.96 (9), p.1511-1550 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053 |
container_end_page | 1550 |
container_issue | 9 |
container_start_page | 1511 |
container_title | Proceedings of the IEEE |
container_volume | 96 |
creator | Anantram, M. P. Lundstrom, Mark S. Nikonov, Dmitri E. |
description | We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed. |
doi_str_mv | 10.1109/JPROC.2008.927355 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2008_927355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4618725</ieee_id><sourcerecordid>34436343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</originalsourceid><addsrcrecordid>eNqFkU1LAzEQQIMoWKs_QEQoHtTL1slMkk2OUr-pVkTPIaZZ2bLdrZtW8N-764oHD_U0MLx5h3mM7XMYcg7m7O7xaTIaIoAeGkxJyg3W41LqBFGqTdYD4DoxyM0224lxBgAkFfXY4X01DUVevg2qbPDgyip6V4TBRfjIfYi7bCtzRQx7P7PPXq4un0c3yXhyfTs6HydeKFomzhNOpXEg5GuzkBn3AjN0BlIpnTCQpUTgUk8q0yRSmso0C577KTceQFKfnXTeRV29r0Jc2nkefSgKV4ZqFa0BUiiNoX9JnUpAbRQ25PFakoQgRaJVnq4FOSAaMKSgQY_-oLNqVZfNa6xWqNFobH28g3xdxViHzC7qfO7qz8Zk21j2O5ZtY9kuVnNz0N3kIYRfXiiuU5T0BQh_i64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862829823</pqid></control><display><type>article</type><title>Modeling of Nanoscale Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Anantram, M. P. ; Lundstrom, Mark S. ; Nikonov, Dmitri E.</creator><creatorcontrib>Anantram, M. P. ; Lundstrom, Mark S. ; Nikonov, Dmitri E.</creatorcontrib><description>We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2008.927355</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ballistic transport ; Carbon nanotubes ; Devices ; Diffusion ; Electron transport ; Equations ; Green's function ; Green's function methods ; Mathematical models ; Nanocomposites ; nanoelectronics ; Nanomaterials ; Nanoscale devices ; Nanostructure ; Nanostructures ; Nanotechnology ; Nanowires ; nonequilibrium ; Particle scattering ; phonons ; Power engineering and energy ; Quantum mechanics ; scattering ; semiconductors ; simulation ; transistor ; Transport</subject><ispartof>Proceedings of the IEEE, 2008-09, Vol.96 (9), p.1511-1550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</citedby><cites>FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4618725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Anantram, M. P.</creatorcontrib><creatorcontrib>Lundstrom, Mark S.</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><title>Modeling of Nanoscale Devices</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.</description><subject>Ballistic transport</subject><subject>Carbon nanotubes</subject><subject>Devices</subject><subject>Diffusion</subject><subject>Electron transport</subject><subject>Equations</subject><subject>Green's function</subject><subject>Green's function methods</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>nanoelectronics</subject><subject>Nanomaterials</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>nonequilibrium</subject><subject>Particle scattering</subject><subject>phonons</subject><subject>Power engineering and energy</subject><subject>Quantum mechanics</subject><subject>scattering</subject><subject>semiconductors</subject><subject>simulation</subject><subject>transistor</subject><subject>Transport</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQQIMoWKs_QEQoHtTL1slMkk2OUr-pVkTPIaZZ2bLdrZtW8N-764oHD_U0MLx5h3mM7XMYcg7m7O7xaTIaIoAeGkxJyg3W41LqBFGqTdYD4DoxyM0224lxBgAkFfXY4X01DUVevg2qbPDgyip6V4TBRfjIfYi7bCtzRQx7P7PPXq4un0c3yXhyfTs6HydeKFomzhNOpXEg5GuzkBn3AjN0BlIpnTCQpUTgUk8q0yRSmso0C577KTceQFKfnXTeRV29r0Jc2nkefSgKV4ZqFa0BUiiNoX9JnUpAbRQ25PFakoQgRaJVnq4FOSAaMKSgQY_-oLNqVZfNa6xWqNFobH28g3xdxViHzC7qfO7qz8Zk21j2O5ZtY9kuVnNz0N3kIYRfXiiuU5T0BQh_i64</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Anantram, M. P.</creator><creator>Lundstrom, Mark S.</creator><creator>Nikonov, Dmitri E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080901</creationdate><title>Modeling of Nanoscale Devices</title><author>Anantram, M. P. ; Lundstrom, Mark S. ; Nikonov, Dmitri E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ballistic transport</topic><topic>Carbon nanotubes</topic><topic>Devices</topic><topic>Diffusion</topic><topic>Electron transport</topic><topic>Equations</topic><topic>Green's function</topic><topic>Green's function methods</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>nanoelectronics</topic><topic>Nanomaterials</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>nonequilibrium</topic><topic>Particle scattering</topic><topic>phonons</topic><topic>Power engineering and energy</topic><topic>Quantum mechanics</topic><topic>scattering</topic><topic>semiconductors</topic><topic>simulation</topic><topic>transistor</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anantram, M. P.</creatorcontrib><creatorcontrib>Lundstrom, Mark S.</creatorcontrib><creatorcontrib>Nikonov, Dmitri E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantram, M. P.</au><au>Lundstrom, Mark S.</au><au>Nikonov, Dmitri E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Nanoscale Devices</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>96</volume><issue>9</issue><spage>1511</spage><epage>1550</epage><pages>1511-1550</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>We aim to provide engineers with an introduction to the nonequilibrium Green's function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical and atomistic effects. We first review the basis for the traditional, semiclassical description of carriers that has served device engineers for more than 50 years. We then describe why this traditional approach loses validity at the nanoscale. Next, we describe semiclassical ballistic transport and the Landauer-Buttiker approach to phase-coherent quantum transport. Realistic devices include interactions that break quantum mechanical phase and also cause energy relaxation. As a result, transport in nanodevices is between diffusive and phase coherent. We introduce the NEGF approach, which can be used to model devices all the way from ballistic to diffusive limits. This is followed by a summary of equations that are used to model a large class of structures such as nanotransistors, carbon nanotubes, and nanowires. Applications of the NEGF method in the ballistic and scattering limits to silicon nanotransistors are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2008.927355</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2008-09, Vol.96 (9), p.1511-1550 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPROC_2008_927355 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Ballistic transport Carbon nanotubes Devices Diffusion Electron transport Equations Green's function Green's function methods Mathematical models Nanocomposites nanoelectronics Nanomaterials Nanoscale devices Nanostructure Nanostructures Nanotechnology Nanowires nonequilibrium Particle scattering phonons Power engineering and energy Quantum mechanics scattering semiconductors simulation transistor Transport |
title | Modeling of Nanoscale Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Nanoscale%20Devices&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Anantram,%20M.%20P.&rft.date=2008-09-01&rft.volume=96&rft.issue=9&rft.spage=1511&rft.epage=1550&rft.pages=1511-1550&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2008.927355&rft_dat=%3Cproquest_cross%3E34436343%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-ac32d59a045b4635f1c42f2a90755a490f7330a7c36f83473d57fec1cd19c0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862829823&rft_id=info:pmid/&rft_ieee_id=4618725&rfr_iscdi=true |