Loading…

Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects

In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2009-07, Vol.97 (7), p.1284-1303
Main Authors: Tsybeskov, Leonid, Lockwood, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2009.2020711