Loading…
Ultrawideband Systems and Networks: Beyond C + L-Band
In the evolution of optical networks, spectral efficiency (SE) enhancement has been the most cost-efficient and thus the main driver for capacity increase for decades. As a result, the development of optical transport systems has been focused on the C - and L -bands, where silica optical fiber exh...
Saved in:
Published in: | Proceedings of the IEEE 2022-11, Vol.110 (11), p.1725-1741 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the evolution of optical networks, spectral efficiency (SE) enhancement has been the most cost-efficient and thus the main driver for capacity increase for decades. As a result, the development of optical transport systems has been focused on the C - and L -bands, where silica optical fiber exhibits the lowest attenuation, and erbium-doped fiber amplifiers provide an efficient solution to compensate for the optical loss. With a gradual maturity in the SE growth, however, the extension of the optical bandwidth beyond the C + L -band is expected to play a significant role in future capacity upgrades of optical networks and, thus, attract increasing research interests. In this article, we discuss the merits and challenges of ultrawideband optical transport systems and networks beyond conventional bands. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2022.3202103 |