Loading…

Photonic Approach for Generating Randomness-Enhanced Physical Chaos Via Dual-Path Optically Injected VCSELs

The randomness enhancement of physical chaos generated by slave vertical-cavity surface-emitting lasers (S-VCSEL) subject to dual-path polarization-preserved optical injection (DP-PPOI) from single master VCSEL (M-VCSEL) with variable-polarization optical feedback (VPOF) is investigated numerically....

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2013-03, Vol.49 (3), p.274-280
Main Authors: Xiang, Shui Ying, Pan, Wei, Li, Nian Qiang, Yan, Lian Shan, Luo, Bin, Zhang, Li Yue, Zhu, Hong Na
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The randomness enhancement of physical chaos generated by slave vertical-cavity surface-emitting lasers (S-VCSEL) subject to dual-path polarization-preserved optical injection (DP-PPOI) from single master VCSEL (M-VCSEL) with variable-polarization optical feedback (VPOF) is investigated numerically. The randomness of chaotic signals is evaluated quantitatively by an information-theory-based quantifier, the permutation entropy. The randomness properties for S-VCSEL with DP-PPOI and S-VCSEL with single-path PPOI are compared, as well as the effects of injection strength, frequency detuning, and VPOF are considered. It is shown that, the PE values for S-VCSELs with two different injection schemes are both much higher than those for M-VCSEL, and increase initially and then decrease until they saturate at a constant level. The region of injection parameter space contributing to randomness-enhanced chaos in S-VCSEL can be greatly broadened by adopting DP-PPOI. The generation of randomness-enhanced chaos via photonic approach is highly desirable for high-speed random number generators based on chaotic VCSELs.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2013.2240262