Loading…

Modeling of Multiple-Quantum-Well p-i-n Photodiodes

A model for multiple-quantum well (MQW) p-i-n photodiode (PD) is presented. The model accounts for the responsivity spectrum and the polarization-dependent loss. The important physical effects for modeling MQW PDs are the carrier transit time through the MQW layers and the free carrier density in th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2014-04, Vol.50 (4), p.220-227
Main Authors: Gan Zhou, Runge, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A model for multiple-quantum well (MQW) p-i-n photodiode (PD) is presented. The model accounts for the responsivity spectrum and the polarization-dependent loss. The important physical effects for modeling MQW PDs are the carrier transit time through the MQW layers and the free carrier density in the quantum wells. Furthermore, both effects influence the internal quantum efficiency and saturation of the optical absorption. The model is verified by comparing with the measurement results of a waveguide integrated MQW p-i-n PD. It is suitable for optimizing the design and describing the properties of MQW p-i-n PDs.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2014.2305015