Loading…
Modeling of Multiple-Quantum-Well p-i-n Photodiodes
A model for multiple-quantum well (MQW) p-i-n photodiode (PD) is presented. The model accounts for the responsivity spectrum and the polarization-dependent loss. The important physical effects for modeling MQW PDs are the carrier transit time through the MQW layers and the free carrier density in th...
Saved in:
Published in: | IEEE journal of quantum electronics 2014-04, Vol.50 (4), p.220-227 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A model for multiple-quantum well (MQW) p-i-n photodiode (PD) is presented. The model accounts for the responsivity spectrum and the polarization-dependent loss. The important physical effects for modeling MQW PDs are the carrier transit time through the MQW layers and the free carrier density in the quantum wells. Furthermore, both effects influence the internal quantum efficiency and saturation of the optical absorption. The model is verified by comparing with the measurement results of a waveguide integrated MQW p-i-n PD. It is suitable for optimizing the design and describing the properties of MQW p-i-n PDs. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2014.2305015 |