Loading…
Terahertz-Band Ultra-Massive Spatial Modulation MIMO
The prospect of ultra-massive multiple-input multiple-output (UM-MIMO) technology to combat the distance problem at the Terahertz (THz) band is considered. It is well-known that the very large available bandwidths at THz frequencies come at the cost of severe propagation losses and power limitations...
Saved in:
Published in: | IEEE journal on selected areas in communications 2019-09, Vol.37 (9), p.2040-2052 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93 |
container_end_page | 2052 |
container_issue | 9 |
container_start_page | 2040 |
container_title | IEEE journal on selected areas in communications |
container_volume | 37 |
creator | Sarieddeen, Hadi Alouini, Mohamed-Slim Al-Naffouri, Tareq Y. |
description | The prospect of ultra-massive multiple-input multiple-output (UM-MIMO) technology to combat the distance problem at the Terahertz (THz) band is considered. It is well-known that the very large available bandwidths at THz frequencies come at the cost of severe propagation losses and power limitations, which result in very short communication distances. Recently, graphene-based plasmonic nano-antenna arrays that can accommodate hundreds of antenna elements in a few millimeters have been proposed. While such arrays enable efficient beamforming that can increase the communication range, they fail to provide sufficient spatial degrees of freedom for spatial multiplexing. In this paper, we examine spatial modulation (SM) techniques that can leverage the properties of densely packed configurable arrays of subarrays of nano-antennas, to increase capacity and spectral efficiency, while maintaining acceptable beamforming performance. Depending on the communication distance and the frequency of operation, a specific SM configuration that ensures good channel conditions is recommended. We analyze the performance of the proposed schemes theoretically and numerically in terms of symbol and bit error rates, where significant gains are observed compared to conventional SM. We demonstrate that SM at very high frequencies is a feasible paradigm, and we motivate several extensions that can make THz-band SM a future research trend. |
doi_str_mv | 10.1109/JSAC.2019.2929455 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2019_2929455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8765243</ieee_id><sourcerecordid>2275627825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd_gHgpeM5M3iRNcpzDj8nKDtvOIV3eYkddZ9IJ-tfbMvH0PIfnA36E3HI24ZzZh7fVdDYBxu0ELFip1BkZcaUMZYyZczJiWghqNM8vyVVKO8a4lAZGRK4x-neM3Q999PuQbZouelr4lOovzFYH39W-yYo2HJvetvusmBfLa3JR-SbhzZ-Oyeb5aT17pYvly3w2XdAtWKsoaiWrUgRe6mDltspz7D-VyEvujVJQCSwDN1YoBt6gAF4yFdD7YJkGb8WY3J92D7H9PGLq3K49xn1_6QC0ykEPc2PCT6ltbFOKWLlDrD98_HacuQGOG-C4AY77g9N37k6dGhH_80bnCqQQv0eEXjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275627825</pqid></control><display><type>article</type><title>Terahertz-Band Ultra-Massive Spatial Modulation MIMO</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sarieddeen, Hadi ; Alouini, Mohamed-Slim ; Al-Naffouri, Tareq Y.</creator><creatorcontrib>Sarieddeen, Hadi ; Alouini, Mohamed-Slim ; Al-Naffouri, Tareq Y.</creatorcontrib><description>The prospect of ultra-massive multiple-input multiple-output (UM-MIMO) technology to combat the distance problem at the Terahertz (THz) band is considered. It is well-known that the very large available bandwidths at THz frequencies come at the cost of severe propagation losses and power limitations, which result in very short communication distances. Recently, graphene-based plasmonic nano-antenna arrays that can accommodate hundreds of antenna elements in a few millimeters have been proposed. While such arrays enable efficient beamforming that can increase the communication range, they fail to provide sufficient spatial degrees of freedom for spatial multiplexing. In this paper, we examine spatial modulation (SM) techniques that can leverage the properties of densely packed configurable arrays of subarrays of nano-antennas, to increase capacity and spectral efficiency, while maintaining acceptable beamforming performance. Depending on the communication distance and the frequency of operation, a specific SM configuration that ensures good channel conditions is recommended. We analyze the performance of the proposed schemes theoretically and numerically in terms of symbol and bit error rates, where significant gains are observed compared to conventional SM. We demonstrate that SM at very high frequencies is a feasible paradigm, and we motivate several extensions that can make THz-band SM a future research trend.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2019.2929455</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Array signal processing ; arrays-of-subarrays ; Beamforming ; Bit error rate ; Communication ; Frequency modulation ; Graphene ; MIMO communication ; Modulation ; Multiplexing ; Nanoantennas ; Plasmons ; spatial modulation ; Terahertz frequencies ; THz communications ; ultra-massive MIMO ; Very high frequencies</subject><ispartof>IEEE journal on selected areas in communications, 2019-09, Vol.37 (9), p.2040-2052</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93</citedby><cites>FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93</cites><orcidid>0000-0002-3050-4256 ; 0000-0001-6955-4720 ; 0000-0003-4827-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8765243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sarieddeen, Hadi</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><creatorcontrib>Al-Naffouri, Tareq Y.</creatorcontrib><title>Terahertz-Band Ultra-Massive Spatial Modulation MIMO</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>The prospect of ultra-massive multiple-input multiple-output (UM-MIMO) technology to combat the distance problem at the Terahertz (THz) band is considered. It is well-known that the very large available bandwidths at THz frequencies come at the cost of severe propagation losses and power limitations, which result in very short communication distances. Recently, graphene-based plasmonic nano-antenna arrays that can accommodate hundreds of antenna elements in a few millimeters have been proposed. While such arrays enable efficient beamforming that can increase the communication range, they fail to provide sufficient spatial degrees of freedom for spatial multiplexing. In this paper, we examine spatial modulation (SM) techniques that can leverage the properties of densely packed configurable arrays of subarrays of nano-antennas, to increase capacity and spectral efficiency, while maintaining acceptable beamforming performance. Depending on the communication distance and the frequency of operation, a specific SM configuration that ensures good channel conditions is recommended. We analyze the performance of the proposed schemes theoretically and numerically in terms of symbol and bit error rates, where significant gains are observed compared to conventional SM. We demonstrate that SM at very high frequencies is a feasible paradigm, and we motivate several extensions that can make THz-band SM a future research trend.</description><subject>Antenna arrays</subject><subject>Array signal processing</subject><subject>arrays-of-subarrays</subject><subject>Beamforming</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Frequency modulation</subject><subject>Graphene</subject><subject>MIMO communication</subject><subject>Modulation</subject><subject>Multiplexing</subject><subject>Nanoantennas</subject><subject>Plasmons</subject><subject>spatial modulation</subject><subject>Terahertz frequencies</subject><subject>THz communications</subject><subject>ultra-massive MIMO</subject><subject>Very high frequencies</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYxoMoOKd_gHgpeM5M3iRNcpzDj8nKDtvOIV3eYkddZ9IJ-tfbMvH0PIfnA36E3HI24ZzZh7fVdDYBxu0ELFip1BkZcaUMZYyZczJiWghqNM8vyVVKO8a4lAZGRK4x-neM3Q999PuQbZouelr4lOovzFYH39W-yYo2HJvetvusmBfLa3JR-SbhzZ-Oyeb5aT17pYvly3w2XdAtWKsoaiWrUgRe6mDltspz7D-VyEvujVJQCSwDN1YoBt6gAF4yFdD7YJkGb8WY3J92D7H9PGLq3K49xn1_6QC0ykEPc2PCT6ltbFOKWLlDrD98_HacuQGOG-C4AY77g9N37k6dGhH_80bnCqQQv0eEXjc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Sarieddeen, Hadi</creator><creator>Alouini, Mohamed-Slim</creator><creator>Al-Naffouri, Tareq Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3050-4256</orcidid><orcidid>https://orcid.org/0000-0001-6955-4720</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid></search><sort><creationdate>20190901</creationdate><title>Terahertz-Band Ultra-Massive Spatial Modulation MIMO</title><author>Sarieddeen, Hadi ; Alouini, Mohamed-Slim ; Al-Naffouri, Tareq Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>Array signal processing</topic><topic>arrays-of-subarrays</topic><topic>Beamforming</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Frequency modulation</topic><topic>Graphene</topic><topic>MIMO communication</topic><topic>Modulation</topic><topic>Multiplexing</topic><topic>Nanoantennas</topic><topic>Plasmons</topic><topic>spatial modulation</topic><topic>Terahertz frequencies</topic><topic>THz communications</topic><topic>ultra-massive MIMO</topic><topic>Very high frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarieddeen, Hadi</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><creatorcontrib>Al-Naffouri, Tareq Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarieddeen, Hadi</au><au>Alouini, Mohamed-Slim</au><au>Al-Naffouri, Tareq Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz-Band Ultra-Massive Spatial Modulation MIMO</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>37</volume><issue>9</issue><spage>2040</spage><epage>2052</epage><pages>2040-2052</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>The prospect of ultra-massive multiple-input multiple-output (UM-MIMO) technology to combat the distance problem at the Terahertz (THz) band is considered. It is well-known that the very large available bandwidths at THz frequencies come at the cost of severe propagation losses and power limitations, which result in very short communication distances. Recently, graphene-based plasmonic nano-antenna arrays that can accommodate hundreds of antenna elements in a few millimeters have been proposed. While such arrays enable efficient beamforming that can increase the communication range, they fail to provide sufficient spatial degrees of freedom for spatial multiplexing. In this paper, we examine spatial modulation (SM) techniques that can leverage the properties of densely packed configurable arrays of subarrays of nano-antennas, to increase capacity and spectral efficiency, while maintaining acceptable beamforming performance. Depending on the communication distance and the frequency of operation, a specific SM configuration that ensures good channel conditions is recommended. We analyze the performance of the proposed schemes theoretically and numerically in terms of symbol and bit error rates, where significant gains are observed compared to conventional SM. We demonstrate that SM at very high frequencies is a feasible paradigm, and we motivate several extensions that can make THz-band SM a future research trend.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2019.2929455</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3050-4256</orcidid><orcidid>https://orcid.org/0000-0001-6955-4720</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2019-09, Vol.37 (9), p.2040-2052 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSAC_2019_2929455 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Antenna arrays Array signal processing arrays-of-subarrays Beamforming Bit error rate Communication Frequency modulation Graphene MIMO communication Modulation Multiplexing Nanoantennas Plasmons spatial modulation Terahertz frequencies THz communications ultra-massive MIMO Very high frequencies |
title | Terahertz-Band Ultra-Massive Spatial Modulation MIMO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz-Band%20Ultra-Massive%20Spatial%20Modulation%20MIMO&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Sarieddeen,%20Hadi&rft.date=2019-09-01&rft.volume=37&rft.issue=9&rft.spage=2040&rft.epage=2052&rft.pages=2040-2052&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2019.2929455&rft_dat=%3Cproquest_cross%3E2275627825%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2995-e754fb3d1b7d94cf66e482536b1a8552f3ebd1893502a8e321b05deaad9072a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275627825&rft_id=info:pmid/&rft_ieee_id=8765243&rfr_iscdi=true |