Loading…
Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs
To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computationa...
Saved in:
Published in: | IEEE journal on selected areas in communications 2024-03, Vol.42 (3), p.552-569 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373 |
container_end_page | 569 |
container_issue | 3 |
container_start_page | 552 |
container_title | IEEE journal on selected areas in communications |
container_volume | 42 |
creator | Wang, Xiaojie Li, Jiameng Ning, Zhaolong Song, Qingyang Guo, Lei Jamalipour, Abbas |
description | To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency. |
doi_str_mv | 10.1109/JSAC.2023.3345433 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2023_3345433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10368183</ieee_id><sourcerecordid>2933608720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3M92642AXwSiCaDHzXY7hWJtcbfF8O8tloOnSSbP-87kQeiakgGlJL6bzIejASOMDzgXUnB-gnpUShUQQtQp6pGI80BFNDxHF95vCKFCKNZD64_cQQHe47fqBxykeAa12YHzcI8nVV7WeGH8J57bNaRNkZcrbMoUL5zZgK0rt8dj8PmqxFnl8Kwp6jwYwy634P-4brMcvvtLdJaZwsPVcfbR8vFhMXoOpq9PL6PhNLAsFnXAqI0oD1WUJBZkSiKREhGCkYwzmSopGbMkS4RRIlYxZ0okaRjGNGMQx5ZHvI9uu96tq74b8LXeVI0r25OaxZyHREWMtBTtKOsq7x1keuvyL-P2mhJ9EKoPQvVBqD4KbTM3XSYHgH98-y1VnP8CXAJwrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933608720</pqid></control><display><type>article</type><title>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</title><source>IEEE Xplore (Online service)</source><creator>Wang, Xiaojie ; Li, Jiameng ; Ning, Zhaolong ; Song, Qingyang ; Guo, Lei ; Jamalipour, Abbas</creator><creatorcontrib>Wang, Xiaojie ; Li, Jiameng ; Ning, Zhaolong ; Song, Qingyang ; Guo, Lei ; Jamalipour, Abbas</creatorcontrib><description>To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2023.3345433</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Charging ; Combinatorial analysis ; Computational efficiency ; Computing time ; Decision analysis ; Decision theory ; Deep reinforcement learning ; Edge computing ; Electronic devices ; Energy consumption ; Heuristic methods ; Human centric metaverse ; Human factors ; Metaverse ; Mobile computing ; Mobile handsets ; Multi-access edge computing ; multi-task deep reinforcement learning ; Multitasking ; Optimization ; Resource management ; Resource scheduling ; Scheduling ; Task scheduling ; Trajectory optimization ; Unmanned aerial vehicles ; User centered design ; wireless powered mobile edge computing</subject><ispartof>IEEE journal on selected areas in communications, 2024-03, Vol.42 (3), p.552-569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</citedby><cites>FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</cites><orcidid>0000-0001-5860-0082 ; 0000-0003-1418-2311 ; 0000-0003-4098-6399 ; 0000-0002-1807-7220 ; 0000-0002-7870-5524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10368183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Li, Jiameng</creatorcontrib><creatorcontrib>Ning, Zhaolong</creatorcontrib><creatorcontrib>Song, Qingyang</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><creatorcontrib>Jamalipour, Abbas</creatorcontrib><title>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Charging</subject><subject>Combinatorial analysis</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Decision analysis</subject><subject>Decision theory</subject><subject>Deep reinforcement learning</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Heuristic methods</subject><subject>Human centric metaverse</subject><subject>Human factors</subject><subject>Metaverse</subject><subject>Mobile computing</subject><subject>Mobile handsets</subject><subject>Multi-access edge computing</subject><subject>multi-task deep reinforcement learning</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Task scheduling</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><subject>User centered design</subject><subject>wireless powered mobile edge computing</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3M92642AXwSiCaDHzXY7hWJtcbfF8O8tloOnSSbP-87kQeiakgGlJL6bzIejASOMDzgXUnB-gnpUShUQQtQp6pGI80BFNDxHF95vCKFCKNZD64_cQQHe47fqBxykeAa12YHzcI8nVV7WeGH8J57bNaRNkZcrbMoUL5zZgK0rt8dj8PmqxFnl8Kwp6jwYwy634P-4brMcvvtLdJaZwsPVcfbR8vFhMXoOpq9PL6PhNLAsFnXAqI0oD1WUJBZkSiKREhGCkYwzmSopGbMkS4RRIlYxZ0okaRjGNGMQx5ZHvI9uu96tq74b8LXeVI0r25OaxZyHREWMtBTtKOsq7x1keuvyL-P2mhJ9EKoPQvVBqD4KbTM3XSYHgH98-y1VnP8CXAJwrw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Xiaojie</creator><creator>Li, Jiameng</creator><creator>Ning, Zhaolong</creator><creator>Song, Qingyang</creator><creator>Guo, Lei</creator><creator>Jamalipour, Abbas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5860-0082</orcidid><orcidid>https://orcid.org/0000-0003-1418-2311</orcidid><orcidid>https://orcid.org/0000-0003-4098-6399</orcidid><orcidid>https://orcid.org/0000-0002-1807-7220</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid></search><sort><creationdate>20240301</creationdate><title>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</title><author>Wang, Xiaojie ; Li, Jiameng ; Ning, Zhaolong ; Song, Qingyang ; Guo, Lei ; Jamalipour, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Charging</topic><topic>Combinatorial analysis</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Decision analysis</topic><topic>Decision theory</topic><topic>Deep reinforcement learning</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Heuristic methods</topic><topic>Human centric metaverse</topic><topic>Human factors</topic><topic>Metaverse</topic><topic>Mobile computing</topic><topic>Mobile handsets</topic><topic>Multi-access edge computing</topic><topic>multi-task deep reinforcement learning</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Task scheduling</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><topic>User centered design</topic><topic>wireless powered mobile edge computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Li, Jiameng</creatorcontrib><creatorcontrib>Ning, Zhaolong</creatorcontrib><creatorcontrib>Song, Qingyang</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><creatorcontrib>Jamalipour, Abbas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaojie</au><au>Li, Jiameng</au><au>Ning, Zhaolong</au><au>Song, Qingyang</au><au>Guo, Lei</au><au>Jamalipour, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>42</volume><issue>3</issue><spage>552</spage><epage>569</epage><pages>552-569</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2023.3345433</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5860-0082</orcidid><orcidid>https://orcid.org/0000-0003-1418-2311</orcidid><orcidid>https://orcid.org/0000-0003-4098-6399</orcidid><orcidid>https://orcid.org/0000-0002-1807-7220</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2024-03, Vol.42 (3), p.552-569 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSAC_2023_3345433 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Autonomous aerial vehicles Charging Combinatorial analysis Computational efficiency Computing time Decision analysis Decision theory Deep reinforcement learning Edge computing Electronic devices Energy consumption Heuristic methods Human centric metaverse Human factors Metaverse Mobile computing Mobile handsets Multi-access edge computing multi-task deep reinforcement learning Multitasking Optimization Resource management Resource scheduling Scheduling Task scheduling Trajectory optimization Unmanned aerial vehicles User centered design wireless powered mobile edge computing |
title | Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Powered%20Metaverse:%20Joint%20Task%20Scheduling%20and%20Trajectory%20Design%20for%20Multi-Devices%20and%20Multi-UAVs&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Wang,%20Xiaojie&rft.date=2024-03-01&rft.volume=42&rft.issue=3&rft.spage=552&rft.epage=569&rft.pages=552-569&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2023.3345433&rft_dat=%3Cproquest_cross%3E2933608720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933608720&rft_id=info:pmid/&rft_ieee_id=10368183&rfr_iscdi=true |