Loading…

Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs

To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computationa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2024-03, Vol.42 (3), p.552-569
Main Authors: Wang, Xiaojie, Li, Jiameng, Ning, Zhaolong, Song, Qingyang, Guo, Lei, Jamalipour, Abbas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373
cites cdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373
container_end_page 569
container_issue 3
container_start_page 552
container_title IEEE journal on selected areas in communications
container_volume 42
creator Wang, Xiaojie
Li, Jiameng
Ning, Zhaolong
Song, Qingyang
Guo, Lei
Jamalipour, Abbas
description To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.
doi_str_mv 10.1109/JSAC.2023.3345433
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2023_3345433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10368183</ieee_id><sourcerecordid>2933608720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3M92642AXwSiCaDHzXY7hWJtcbfF8O8tloOnSSbP-87kQeiakgGlJL6bzIejASOMDzgXUnB-gnpUShUQQtQp6pGI80BFNDxHF95vCKFCKNZD64_cQQHe47fqBxykeAa12YHzcI8nVV7WeGH8J57bNaRNkZcrbMoUL5zZgK0rt8dj8PmqxFnl8Kwp6jwYwy634P-4brMcvvtLdJaZwsPVcfbR8vFhMXoOpq9PL6PhNLAsFnXAqI0oD1WUJBZkSiKREhGCkYwzmSopGbMkS4RRIlYxZ0okaRjGNGMQx5ZHvI9uu96tq74b8LXeVI0r25OaxZyHREWMtBTtKOsq7x1keuvyL-P2mhJ9EKoPQvVBqD4KbTM3XSYHgH98-y1VnP8CXAJwrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933608720</pqid></control><display><type>article</type><title>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</title><source>IEEE Xplore (Online service)</source><creator>Wang, Xiaojie ; Li, Jiameng ; Ning, Zhaolong ; Song, Qingyang ; Guo, Lei ; Jamalipour, Abbas</creator><creatorcontrib>Wang, Xiaojie ; Li, Jiameng ; Ning, Zhaolong ; Song, Qingyang ; Guo, Lei ; Jamalipour, Abbas</creatorcontrib><description>To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2023.3345433</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Charging ; Combinatorial analysis ; Computational efficiency ; Computing time ; Decision analysis ; Decision theory ; Deep reinforcement learning ; Edge computing ; Electronic devices ; Energy consumption ; Heuristic methods ; Human centric metaverse ; Human factors ; Metaverse ; Mobile computing ; Mobile handsets ; Multi-access edge computing ; multi-task deep reinforcement learning ; Multitasking ; Optimization ; Resource management ; Resource scheduling ; Scheduling ; Task scheduling ; Trajectory optimization ; Unmanned aerial vehicles ; User centered design ; wireless powered mobile edge computing</subject><ispartof>IEEE journal on selected areas in communications, 2024-03, Vol.42 (3), p.552-569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</citedby><cites>FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</cites><orcidid>0000-0001-5860-0082 ; 0000-0003-1418-2311 ; 0000-0003-4098-6399 ; 0000-0002-1807-7220 ; 0000-0002-7870-5524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10368183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Li, Jiameng</creatorcontrib><creatorcontrib>Ning, Zhaolong</creatorcontrib><creatorcontrib>Song, Qingyang</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><creatorcontrib>Jamalipour, Abbas</creatorcontrib><title>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Charging</subject><subject>Combinatorial analysis</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Decision analysis</subject><subject>Decision theory</subject><subject>Deep reinforcement learning</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Heuristic methods</subject><subject>Human centric metaverse</subject><subject>Human factors</subject><subject>Metaverse</subject><subject>Mobile computing</subject><subject>Mobile handsets</subject><subject>Multi-access edge computing</subject><subject>multi-task deep reinforcement learning</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Task scheduling</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><subject>User centered design</subject><subject>wireless powered mobile edge computing</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3M92642AXwSiCaDHzXY7hWJtcbfF8O8tloOnSSbP-87kQeiakgGlJL6bzIejASOMDzgXUnB-gnpUShUQQtQp6pGI80BFNDxHF95vCKFCKNZD64_cQQHe47fqBxykeAa12YHzcI8nVV7WeGH8J57bNaRNkZcrbMoUL5zZgK0rt8dj8PmqxFnl8Kwp6jwYwy634P-4brMcvvtLdJaZwsPVcfbR8vFhMXoOpq9PL6PhNLAsFnXAqI0oD1WUJBZkSiKREhGCkYwzmSopGbMkS4RRIlYxZ0okaRjGNGMQx5ZHvI9uu96tq74b8LXeVI0r25OaxZyHREWMtBTtKOsq7x1keuvyL-P2mhJ9EKoPQvVBqD4KbTM3XSYHgH98-y1VnP8CXAJwrw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Xiaojie</creator><creator>Li, Jiameng</creator><creator>Ning, Zhaolong</creator><creator>Song, Qingyang</creator><creator>Guo, Lei</creator><creator>Jamalipour, Abbas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5860-0082</orcidid><orcidid>https://orcid.org/0000-0003-1418-2311</orcidid><orcidid>https://orcid.org/0000-0003-4098-6399</orcidid><orcidid>https://orcid.org/0000-0002-1807-7220</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid></search><sort><creationdate>20240301</creationdate><title>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</title><author>Wang, Xiaojie ; Li, Jiameng ; Ning, Zhaolong ; Song, Qingyang ; Guo, Lei ; Jamalipour, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Charging</topic><topic>Combinatorial analysis</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Decision analysis</topic><topic>Decision theory</topic><topic>Deep reinforcement learning</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Heuristic methods</topic><topic>Human centric metaverse</topic><topic>Human factors</topic><topic>Metaverse</topic><topic>Mobile computing</topic><topic>Mobile handsets</topic><topic>Multi-access edge computing</topic><topic>multi-task deep reinforcement learning</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Task scheduling</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><topic>User centered design</topic><topic>wireless powered mobile edge computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Li, Jiameng</creatorcontrib><creatorcontrib>Ning, Zhaolong</creatorcontrib><creatorcontrib>Song, Qingyang</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><creatorcontrib>Jamalipour, Abbas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaojie</au><au>Li, Jiameng</au><au>Ning, Zhaolong</au><au>Song, Qingyang</au><au>Guo, Lei</au><au>Jamalipour, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>42</volume><issue>3</issue><spage>552</spage><epage>569</epage><pages>552-569</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2023.3345433</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5860-0082</orcidid><orcidid>https://orcid.org/0000-0003-1418-2311</orcidid><orcidid>https://orcid.org/0000-0003-4098-6399</orcidid><orcidid>https://orcid.org/0000-0002-1807-7220</orcidid><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2024-03, Vol.42 (3), p.552-569
issn 0733-8716
1558-0008
language eng
recordid cdi_crossref_primary_10_1109_JSAC_2023_3345433
source IEEE Xplore (Online service)
subjects Algorithms
Autonomous aerial vehicles
Charging
Combinatorial analysis
Computational efficiency
Computing time
Decision analysis
Decision theory
Deep reinforcement learning
Edge computing
Electronic devices
Energy consumption
Heuristic methods
Human centric metaverse
Human factors
Metaverse
Mobile computing
Mobile handsets
Multi-access edge computing
multi-task deep reinforcement learning
Multitasking
Optimization
Resource management
Resource scheduling
Scheduling
Task scheduling
Trajectory optimization
Unmanned aerial vehicles
User centered design
wireless powered mobile edge computing
title Wireless Powered Metaverse: Joint Task Scheduling and Trajectory Design for Multi-Devices and Multi-UAVs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Powered%20Metaverse:%20Joint%20Task%20Scheduling%20and%20Trajectory%20Design%20for%20Multi-Devices%20and%20Multi-UAVs&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Wang,%20Xiaojie&rft.date=2024-03-01&rft.volume=42&rft.issue=3&rft.spage=552&rft.epage=569&rft.pages=552-569&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2023.3345433&rft_dat=%3Cproquest_cross%3E2933608720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-21c713687bbce5d074d046ea52325d85522c0fb4a849893284bd6691f2e99c373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933608720&rft_id=info:pmid/&rft_ieee_id=10368183&rfr_iscdi=true