Loading…
SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning
Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real...
Saved in:
Published in: | IEEE Journal of Selected Areas in Sensors 2024, Vol.1, p.237-248 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3 |
container_end_page | 248 |
container_issue | |
container_start_page | 237 |
container_title | IEEE Journal of Selected Areas in Sensors |
container_volume | 1 |
creator | Li, Wenxuan Zhang, Dongheng Li, Yadong Song, Ruiyuan Hu, Yang Sun, Qibin Chen, Yan |
description | Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity. |
doi_str_mv | 10.1109/JSAS.2024.3481205 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAS_2024_3481205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716775</ieee_id><sourcerecordid>10_1109_JSAS_2024_3481205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3</originalsourceid><addsrcrecordid>eNpNkN1Kw0AQRhdRsNQ-gODFvkDq_mY33pVoqxIQmkrxKkySiS6kadmNBd_ehPaiV_MNfGdgDiH3nM05Z8nje77I54IJNZfKcsH0FZkIK-NIMMOvL_ItmYXgSqa1NjaxakK-8jSLltC2T3SNrYOyRTqu9Bl7rHq37-hncN033e22cES6hho83br-h-a_B_RHF7Cm6b7rPYTeDY0MwXcDcUduGmgDzs5zSjbLl036GmUfq7d0kUVVLHUEAqq4AW0M01iyxBqmLEBiTG1QJ7LUVqrGKqhMLJqKI6iG2UTKeHhC2FJOCT-drfw-BI9NcfBuB_6v4KwY7RSjnWK0U5ztDMzDiXGIeNE3PDZGy3_MRGAm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</title><source>IEEE Xplore All Journals</source><creator>Li, Wenxuan ; Zhang, Dongheng ; Li, Yadong ; Song, Ruiyuan ; Hu, Yang ; Sun, Qibin ; Chen, Yan</creator><creatorcontrib>Li, Wenxuan ; Zhang, Dongheng ; Li, Yadong ; Song, Ruiyuan ; Hu, Yang ; Sun, Qibin ; Chen, Yan</creatorcontrib><description>Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.</description><identifier>ISSN: 2836-2071</identifier><identifier>EISSN: 2836-2071</identifier><identifier>DOI: 10.1109/JSAS.2024.3481205</identifier><identifier>CODEN: IJSAB6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Contrastive learning ; data augmentation ; Fall detection ; Feature extraction ; Millimeter wave radar ; neural network ; Neural networks ; Radar ; Real-time systems ; Sensors ; wireless sensing ; Wireless sensor networks</subject><ispartof>IEEE Journal of Selected Areas in Sensors, 2024, Vol.1, p.237-248</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3</cites><orcidid>0009-0009-7720-7257 ; 0000-0002-6789-7460 ; 0009-0004-3654-965X ; 0000-0003-0379-1525 ; 0000-0001-6309-6626 ; 0000-0002-3227-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716775$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54792</link.rule.ids></links><search><creatorcontrib>Li, Wenxuan</creatorcontrib><creatorcontrib>Zhang, Dongheng</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><creatorcontrib>Song, Ruiyuan</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Sun, Qibin</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><title>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</title><title>IEEE Journal of Selected Areas in Sensors</title><addtitle>JSAS</addtitle><description>Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.</description><subject>Accuracy</subject><subject>Contrastive learning</subject><subject>data augmentation</subject><subject>Fall detection</subject><subject>Feature extraction</subject><subject>Millimeter wave radar</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Radar</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>wireless sensing</subject><subject>Wireless sensor networks</subject><issn>2836-2071</issn><issn>2836-2071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkN1Kw0AQRhdRsNQ-gODFvkDq_mY33pVoqxIQmkrxKkySiS6kadmNBd_ehPaiV_MNfGdgDiH3nM05Z8nje77I54IJNZfKcsH0FZkIK-NIMMOvL_ItmYXgSqa1NjaxakK-8jSLltC2T3SNrYOyRTqu9Bl7rHq37-hncN033e22cES6hho83br-h-a_B_RHF7Cm6b7rPYTeDY0MwXcDcUduGmgDzs5zSjbLl036GmUfq7d0kUVVLHUEAqq4AW0M01iyxBqmLEBiTG1QJ7LUVqrGKqhMLJqKI6iG2UTKeHhC2FJOCT-drfw-BI9NcfBuB_6v4KwY7RSjnWK0U5ztDMzDiXGIeNE3PDZGy3_MRGAm</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Wenxuan</creator><creator>Zhang, Dongheng</creator><creator>Li, Yadong</creator><creator>Song, Ruiyuan</creator><creator>Hu, Yang</creator><creator>Sun, Qibin</creator><creator>Chen, Yan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7720-7257</orcidid><orcidid>https://orcid.org/0000-0002-6789-7460</orcidid><orcidid>https://orcid.org/0009-0004-3654-965X</orcidid><orcidid>https://orcid.org/0000-0003-0379-1525</orcidid><orcidid>https://orcid.org/0000-0001-6309-6626</orcidid><orcidid>https://orcid.org/0000-0002-3227-4562</orcidid></search><sort><creationdate>2024</creationdate><title>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</title><author>Li, Wenxuan ; Zhang, Dongheng ; Li, Yadong ; Song, Ruiyuan ; Hu, Yang ; Sun, Qibin ; Chen, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Contrastive learning</topic><topic>data augmentation</topic><topic>Fall detection</topic><topic>Feature extraction</topic><topic>Millimeter wave radar</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Radar</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>wireless sensing</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenxuan</creatorcontrib><creatorcontrib>Zhang, Dongheng</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><creatorcontrib>Song, Ruiyuan</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Sun, Qibin</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE Journal of Selected Areas in Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenxuan</au><au>Zhang, Dongheng</au><au>Li, Yadong</au><au>Song, Ruiyuan</au><au>Hu, Yang</au><au>Sun, Qibin</au><au>Chen, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</atitle><jtitle>IEEE Journal of Selected Areas in Sensors</jtitle><stitle>JSAS</stitle><date>2024</date><risdate>2024</risdate><volume>1</volume><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>2836-2071</issn><eissn>2836-2071</eissn><coden>IJSAB6</coden><abstract>Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.</abstract><pub>IEEE</pub><doi>10.1109/JSAS.2024.3481205</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0009-7720-7257</orcidid><orcidid>https://orcid.org/0000-0002-6789-7460</orcidid><orcidid>https://orcid.org/0009-0004-3654-965X</orcidid><orcidid>https://orcid.org/0000-0003-0379-1525</orcidid><orcidid>https://orcid.org/0000-0001-6309-6626</orcidid><orcidid>https://orcid.org/0000-0002-3227-4562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2836-2071 |
ispartof | IEEE Journal of Selected Areas in Sensors, 2024, Vol.1, p.237-248 |
issn | 2836-2071 2836-2071 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSAS_2024_3481205 |
source | IEEE Xplore All Journals |
subjects | Accuracy Contrastive learning data augmentation Fall detection Feature extraction Millimeter wave radar neural network Neural networks Radar Real-time systems Sensors wireless sensing Wireless sensor networks |
title | SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCL-Fall:%20Reliable%20Fall%20Detection%20Using%20mmWave%20Radar%20With%20Supervised%20Contrastive%20Learning&rft.jtitle=IEEE%20Journal%20of%20Selected%20Areas%20in%20Sensors&rft.au=Li,%20Wenxuan&rft.date=2024&rft.volume=1&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=2836-2071&rft.eissn=2836-2071&rft.coden=IJSAB6&rft_id=info:doi/10.1109/JSAS.2024.3481205&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSAS_2024_3481205%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10716775&rfr_iscdi=true |