Loading…

Low Power Wireless Sensor Network for Building Monitoring

A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive microelectromechanical systems strain and 3-D acceleration sensors and a low power readout application-specified integrated circuit for a battery life of up to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2013-03, Vol.13 (3), p.909-915
Main Authors: Torfs, T., Sterken, T., Brebels, S., Santana, J., van den Hoven, R., Spiering, V., Bertsch, N., Trapani, D., Zonta, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive microelectromechanical systems strain and 3-D acceleration sensors and a low power readout application-specified integrated circuit for a battery life of up to 12 years. The strain sensors are mounted at the base of the building to measure the settlement and plastic hinge activation of the building after an earthquake. They measure periodically or on-demand from the base station. The accelerometers are mounted at every floor of the building to measure the seismic response of the building during an earthquake. They record during an earthquake event using a combination of the local acceleration data and remote triggering from the base station based on the acceleration data from multiple sensors across the building. A low power network architecture was implemented over an 802.15.4 MAC in the 900-MHz band. A custom patch antenna was designed in this frequency band to obtain robust links in real-world conditions. The modules have been validated in a full-scale laboratory setup with simulated earthquakes.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2012.2218680