Loading…
Low Power Wireless Sensor Network for Building Monitoring
A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive microelectromechanical systems strain and 3-D acceleration sensors and a low power readout application-specified integrated circuit for a battery life of up to...
Saved in:
Published in: | IEEE sensors journal 2013-03, Vol.13 (3), p.909-915 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive microelectromechanical systems strain and 3-D acceleration sensors and a low power readout application-specified integrated circuit for a battery life of up to 12 years. The strain sensors are mounted at the base of the building to measure the settlement and plastic hinge activation of the building after an earthquake. They measure periodically or on-demand from the base station. The accelerometers are mounted at every floor of the building to measure the seismic response of the building during an earthquake. They record during an earthquake event using a combination of the local acceleration data and remote triggering from the base station based on the acceleration data from multiple sensors across the building. A low power network architecture was implemented over an 802.15.4 MAC in the 900-MHz band. A custom patch antenna was designed in this frequency band to obtain robust links in real-world conditions. The modules have been validated in a full-scale laboratory setup with simulated earthquakes. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2012.2218680 |