Loading…
Enhancement in CMOS-MEMS Resonator for High Sensitive Temperature Sensing
This paper presents the enhancement in frequency shift per Celsius for high-temperature sensitive applications of microresonators. Using materials with different coefficients of thermal expansion in a substrate and beam, larger axial load on fixed ends are demonstrated. This results in a larger freq...
Saved in:
Published in: | IEEE sensors journal 2017-02, Vol.17 (3), p.598-603 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the enhancement in frequency shift per Celsius for high-temperature sensitive applications of microresonators. Using materials with different coefficients of thermal expansion in a substrate and beam, larger axial load on fixed ends are demonstrated. This results in a larger frequency shift with the increase in the ambient temperature. An analytical model is presented that closely matches simulation and measurement results. The 120-μm CMOS-MEMS fixed-fixed beam resonators, consisting of multiple metal, dielectric layers, and polysilicon layer, were designed and measured with a center frequency around 640 kHz. A sensitivity up to -2983 Hz/°C is achieved without sacrificing stiffness constant. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2016.2633619 |