Loading…

Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor

This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the secon...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2018-03, Vol.18 (6), p.2278-2284
Main Authors: Yu, Jun, He, Xinzhi, Li, Decai, Li, Wenyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3
cites cdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3
container_end_page 2284
container_issue 6
container_start_page 2278
container_title IEEE sensors journal
container_volume 18
creator Yu, Jun
He, Xinzhi
Li, Decai
Li, Wenyi
description This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.
doi_str_mv 10.1109/JSEN.2018.2793944
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2018_2793944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8259223</ieee_id><sourcerecordid>10_1109_JSEN_2018_2793944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpzkrRpLufYprI5YQrelTQ9dZWaSNIJe3tbNrw6_4H_-y8-Qm6BTQCYvn_ezl8mnEE-4UoLLeUZGUGa5gkomZ8PWbBECvVxSa5i_GIMtErViLTzukbbNb9IjavoazD9Y01L19jtfBVp5-nMtHbfmg5pt0O6RetdlWxChYE-7P3BOHugjaNr8-mwh-mi3TcVnVqLLQbTNd71kIs-XJOL2rQRb053TN4X87fZY7LaLJ9m01ViBYguMSoVWc4tSiWQSS3zTChuU6kyA6Asq3TJJasRAaUomcxAG6htCWmtkZdiTOC4a4OPMWBd_ITm24RDAawYdBWDrmLQVZx09czdkWkQ8b-f81RzLsQfLNVnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yu, Jun ; He, Xinzhi ; Li, Decai ; Li, Wenyi</creator><creatorcontrib>Yu, Jun ; He, Xinzhi ; Li, Decai ; Li, Wenyi</creatorcontrib><description>This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2793944</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; acceleration sensor ; Buoyancy ; Containers ; magnetic fluid ; magnetic fluid buoyancy ; magnetic fluid levitation force ; Magnetic levitation ; Magnetic liquids ; Magnetic sensors ; Second-order buoyancy</subject><ispartof>IEEE sensors journal, 2018-03, Vol.18 (6), p.2278-2284</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</citedby><cites>FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</cites><orcidid>0000-0002-7758-9349 ; 0000-0002-2963-5478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8259223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>He, Xinzhi</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><title>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.</description><subject>Acceleration</subject><subject>acceleration sensor</subject><subject>Buoyancy</subject><subject>Containers</subject><subject>magnetic fluid</subject><subject>magnetic fluid buoyancy</subject><subject>magnetic fluid levitation force</subject><subject>Magnetic levitation</subject><subject>Magnetic liquids</subject><subject>Magnetic sensors</subject><subject>Second-order buoyancy</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpzkrRpLufYprI5YQrelTQ9dZWaSNIJe3tbNrw6_4H_-y8-Qm6BTQCYvn_ezl8mnEE-4UoLLeUZGUGa5gkomZ8PWbBECvVxSa5i_GIMtErViLTzukbbNb9IjavoazD9Y01L19jtfBVp5-nMtHbfmg5pt0O6RetdlWxChYE-7P3BOHugjaNr8-mwh-mi3TcVnVqLLQbTNd71kIs-XJOL2rQRb053TN4X87fZY7LaLJ9m01ViBYguMSoVWc4tSiWQSS3zTChuU6kyA6Asq3TJJasRAaUomcxAG6htCWmtkZdiTOC4a4OPMWBd_ITm24RDAawYdBWDrmLQVZx09czdkWkQ8b-f81RzLsQfLNVnJQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Yu, Jun</creator><creator>He, Xinzhi</creator><creator>Li, Decai</creator><creator>Li, Wenyi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7758-9349</orcidid><orcidid>https://orcid.org/0000-0002-2963-5478</orcidid></search><sort><creationdate>20180315</creationdate><title>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</title><author>Yu, Jun ; He, Xinzhi ; Li, Decai ; Li, Wenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>acceleration sensor</topic><topic>Buoyancy</topic><topic>Containers</topic><topic>magnetic fluid</topic><topic>magnetic fluid buoyancy</topic><topic>magnetic fluid levitation force</topic><topic>Magnetic levitation</topic><topic>Magnetic liquids</topic><topic>Magnetic sensors</topic><topic>Second-order buoyancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>He, Xinzhi</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jun</au><au>He, Xinzhi</au><au>Li, Decai</au><au>Li, Wenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-03-15</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>2278</spage><epage>2284</epage><pages>2278-2284</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2018.2793944</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7758-9349</orcidid><orcidid>https://orcid.org/0000-0002-2963-5478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2018-03, Vol.18 (6), p.2278-2284
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2018_2793944
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
acceleration sensor
Buoyancy
Containers
magnetic fluid
magnetic fluid buoyancy
magnetic fluid levitation force
Magnetic levitation
Magnetic liquids
Magnetic sensors
Second-order buoyancy
title Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20and%20Practical%20Methods%20to%20Calculate%20the%20Second-Order%20Buoyancy%20in%20Magnetic%20Fluid%20Acceleration%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yu,%20Jun&rft.date=2018-03-15&rft.volume=18&rft.issue=6&rft.spage=2278&rft.epage=2284&rft.pages=2278-2284&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2793944&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2018_2793944%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8259223&rfr_iscdi=true