Loading…
Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor
This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the secon...
Saved in:
Published in: | IEEE sensors journal 2018-03, Vol.18 (6), p.2278-2284 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3 |
container_end_page | 2284 |
container_issue | 6 |
container_start_page | 2278 |
container_title | IEEE sensors journal |
container_volume | 18 |
creator | Yu, Jun He, Xinzhi Li, Decai Li, Wenyi |
description | This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function. |
doi_str_mv | 10.1109/JSEN.2018.2793944 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2018_2793944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8259223</ieee_id><sourcerecordid>10_1109_JSEN_2018_2793944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpzkrRpLufYprI5YQrelTQ9dZWaSNIJe3tbNrw6_4H_-y8-Qm6BTQCYvn_ezl8mnEE-4UoLLeUZGUGa5gkomZ8PWbBECvVxSa5i_GIMtErViLTzukbbNb9IjavoazD9Y01L19jtfBVp5-nMtHbfmg5pt0O6RetdlWxChYE-7P3BOHugjaNr8-mwh-mi3TcVnVqLLQbTNd71kIs-XJOL2rQRb053TN4X87fZY7LaLJ9m01ViBYguMSoVWc4tSiWQSS3zTChuU6kyA6Asq3TJJasRAaUomcxAG6htCWmtkZdiTOC4a4OPMWBd_ITm24RDAawYdBWDrmLQVZx09czdkWkQ8b-f81RzLsQfLNVnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yu, Jun ; He, Xinzhi ; Li, Decai ; Li, Wenyi</creator><creatorcontrib>Yu, Jun ; He, Xinzhi ; Li, Decai ; Li, Wenyi</creatorcontrib><description>This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2793944</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; acceleration sensor ; Buoyancy ; Containers ; magnetic fluid ; magnetic fluid buoyancy ; magnetic fluid levitation force ; Magnetic levitation ; Magnetic liquids ; Magnetic sensors ; Second-order buoyancy</subject><ispartof>IEEE sensors journal, 2018-03, Vol.18 (6), p.2278-2284</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</citedby><cites>FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</cites><orcidid>0000-0002-7758-9349 ; 0000-0002-2963-5478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8259223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>He, Xinzhi</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><title>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.</description><subject>Acceleration</subject><subject>acceleration sensor</subject><subject>Buoyancy</subject><subject>Containers</subject><subject>magnetic fluid</subject><subject>magnetic fluid buoyancy</subject><subject>magnetic fluid levitation force</subject><subject>Magnetic levitation</subject><subject>Magnetic liquids</subject><subject>Magnetic sensors</subject><subject>Second-order buoyancy</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpzkrRpLufYprI5YQrelTQ9dZWaSNIJe3tbNrw6_4H_-y8-Qm6BTQCYvn_ezl8mnEE-4UoLLeUZGUGa5gkomZ8PWbBECvVxSa5i_GIMtErViLTzukbbNb9IjavoazD9Y01L19jtfBVp5-nMtHbfmg5pt0O6RetdlWxChYE-7P3BOHugjaNr8-mwh-mi3TcVnVqLLQbTNd71kIs-XJOL2rQRb053TN4X87fZY7LaLJ9m01ViBYguMSoVWc4tSiWQSS3zTChuU6kyA6Asq3TJJasRAaUomcxAG6htCWmtkZdiTOC4a4OPMWBd_ITm24RDAawYdBWDrmLQVZx09czdkWkQ8b-f81RzLsQfLNVnJQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Yu, Jun</creator><creator>He, Xinzhi</creator><creator>Li, Decai</creator><creator>Li, Wenyi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7758-9349</orcidid><orcidid>https://orcid.org/0000-0002-2963-5478</orcidid></search><sort><creationdate>20180315</creationdate><title>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</title><author>Yu, Jun ; He, Xinzhi ; Li, Decai ; Li, Wenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>acceleration sensor</topic><topic>Buoyancy</topic><topic>Containers</topic><topic>magnetic fluid</topic><topic>magnetic fluid buoyancy</topic><topic>magnetic fluid levitation force</topic><topic>Magnetic levitation</topic><topic>Magnetic liquids</topic><topic>Magnetic sensors</topic><topic>Second-order buoyancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>He, Xinzhi</creatorcontrib><creatorcontrib>Li, Decai</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jun</au><au>He, Xinzhi</au><au>Li, Decai</au><au>Li, Wenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-03-15</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>2278</spage><epage>2284</epage><pages>2278-2284</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper concerns the nature of the peculiar second-order buoyancy experienced by a magnet in magnetic fluid acceleration sensor. The equilibrium differential equation of magnetic fluid under the action of magnetic field and gravity field is established and the expression for calculating the second-order buoyancy is derived. Three practical and effective methods to calculate the second-order buoyancy called surface integral method, magnetic force method, and equivalent magnetic force method are proposed. Besides, the second-order buoyancy is calculated by the three methods mentioned above and measured experimentally. The calculation results are in very good agreement with the experimental results, for all the three methods, the calculation error is less than 7% compared with the numerical range of second-order buoyancy. Both calculation and experimental results show that the second-order buoyancy increases rapidly with the decrease of the axial distance between the bottom of the magnet and the container, and the trend can be fitted well by an exponential function.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2018.2793944</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7758-9349</orcidid><orcidid>https://orcid.org/0000-0002-2963-5478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2018-03, Vol.18 (6), p.2278-2284 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2018_2793944 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration acceleration sensor Buoyancy Containers magnetic fluid magnetic fluid buoyancy magnetic fluid levitation force Magnetic levitation Magnetic liquids Magnetic sensors Second-order buoyancy |
title | Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration Sensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20and%20Practical%20Methods%20to%20Calculate%20the%20Second-Order%20Buoyancy%20in%20Magnetic%20Fluid%20Acceleration%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yu,%20Jun&rft.date=2018-03-15&rft.volume=18&rft.issue=6&rft.spage=2278&rft.epage=2284&rft.pages=2278-2284&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2793944&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2018_2793944%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-a753682ce473e049486372c5476a117c0d9b240fee1e43b04619a1fcb15f9e2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8259223&rfr_iscdi=true |