Loading…
Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition
A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-re...
Saved in:
Published in: | IEEE sensors journal 2019-06, Vol.19 (11), p.4045-4053 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023 |
container_end_page | 4053 |
container_issue | 11 |
container_start_page | 4045 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Hashempour, Hamid Reza Sheikhi, Abbas |
description | A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods. |
doi_str_mv | 10.1109/JSEN.2019.2899112 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2019_2899112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641330</ieee_id><sourcerecordid>2220401232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6WOKfYjvM6ljaUoj4QKRK3yHHWIVVjlzip1AP_TkIRp33NzO4OQreUjCgl0cNLEq9GjNBoxMIoopSdoQH1vNChAQ_P-9wlDneDj0t0Ze2WdMjACwboe3rUoiolnifjNzyvRFHqAgud43HbGGVka_uGUXgpNLQHqPtyI-oCGosfhYUcG40T-GpBN6XY4dmrk6zXqxgvofk0-a9WXBagD2LXAp6CNNXe2LIpjb5GF0rsLNz8xSF6f4o3k2dnsZ7NJ-OFI10vahwVSOYLyYHkGZG-pxjpBhQEo4L7PuO-9LMsp4pFSmSk-0yRKOdewDkjPmHuEN2fdPe16Q61Tbo1ba27lSljjHBCmduj6Akla2NtDSrd12Ul6mNKSdq7nPYup73L6Z_LHefuxCkB4B8f-py6LnF_ADOLeI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220401232</pqid></control><display><type>article</type><title>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hashempour, Hamid Reza ; Sheikhi, Abbas</creator><creatorcontrib>Hashempour, Hamid Reza ; Sheikhi, Abbas</creatorcontrib><description>A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2899112</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; autofocus ; Blurring ; Computer simulation ; Decomposition ; eigenvalue decomposition ; Eigenvalues ; Heuristic algorithms ; High resolution ; Image resolution ; Imaging ; Inverse synthetic aperture radar ; Inverse synthetic aperture radar (ISAR) ; Maneuvering targets ; Matching pursuit algorithms ; Radar imaging ; Sensors ; sequential order one negative exponential (SOONE) function ; Signal processing algorithms ; Signal resolution ; sparse matrix recovery ; Two dimensional displays</subject><ispartof>IEEE sensors journal, 2019-06, Vol.19 (11), p.4045-4053</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</citedby><cites>FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</cites><orcidid>0000-0003-1041-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hashempour, Hamid Reza</creatorcontrib><creatorcontrib>Sheikhi, Abbas</creatorcontrib><title>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.</description><subject>Algorithms</subject><subject>autofocus</subject><subject>Blurring</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>eigenvalue decomposition</subject><subject>Eigenvalues</subject><subject>Heuristic algorithms</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Inverse synthetic aperture radar</subject><subject>Inverse synthetic aperture radar (ISAR)</subject><subject>Maneuvering targets</subject><subject>Matching pursuit algorithms</subject><subject>Radar imaging</subject><subject>Sensors</subject><subject>sequential order one negative exponential (SOONE) function</subject><subject>Signal processing algorithms</subject><subject>Signal resolution</subject><subject>sparse matrix recovery</subject><subject>Two dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMIHIC6WOKfYjvM6ljaUoj4QKRK3yHHWIVVjlzip1AP_TkIRp33NzO4OQreUjCgl0cNLEq9GjNBoxMIoopSdoQH1vNChAQ_P-9wlDneDj0t0Ze2WdMjACwboe3rUoiolnifjNzyvRFHqAgud43HbGGVka_uGUXgpNLQHqPtyI-oCGosfhYUcG40T-GpBN6XY4dmrk6zXqxgvofk0-a9WXBagD2LXAp6CNNXe2LIpjb5GF0rsLNz8xSF6f4o3k2dnsZ7NJ-OFI10vahwVSOYLyYHkGZG-pxjpBhQEo4L7PuO-9LMsp4pFSmSk-0yRKOdewDkjPmHuEN2fdPe16Q61Tbo1ba27lSljjHBCmduj6Akla2NtDSrd12Ul6mNKSdq7nPYup73L6Z_LHefuxCkB4B8f-py6LnF_ADOLeI8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hashempour, Hamid Reza</creator><creator>Sheikhi, Abbas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1041-3012</orcidid></search><sort><creationdate>20190601</creationdate><title>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</title><author>Hashempour, Hamid Reza ; Sheikhi, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>autofocus</topic><topic>Blurring</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>eigenvalue decomposition</topic><topic>Eigenvalues</topic><topic>Heuristic algorithms</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Inverse synthetic aperture radar</topic><topic>Inverse synthetic aperture radar (ISAR)</topic><topic>Maneuvering targets</topic><topic>Matching pursuit algorithms</topic><topic>Radar imaging</topic><topic>Sensors</topic><topic>sequential order one negative exponential (SOONE) function</topic><topic>Signal processing algorithms</topic><topic>Signal resolution</topic><topic>sparse matrix recovery</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashempour, Hamid Reza</creatorcontrib><creatorcontrib>Sheikhi, Abbas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashempour, Hamid Reza</au><au>Sheikhi, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>19</volume><issue>11</issue><spage>4045</spage><epage>4053</epage><pages>4045-4053</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2899112</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1041-3012</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-06, Vol.19 (11), p.4045-4053 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2019_2899112 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms autofocus Blurring Computer simulation Decomposition eigenvalue decomposition Eigenvalues Heuristic algorithms High resolution Image resolution Imaging Inverse synthetic aperture radar Inverse synthetic aperture radar (ISAR) Maneuvering targets Matching pursuit algorithms Radar imaging Sensors sequential order one negative exponential (SOONE) function Signal processing algorithms Signal resolution sparse matrix recovery Two dimensional displays |
title | Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20ISAR%20Imaging%20and%20Autofocusing%20of%20Maneuvering%20Targets%20Based%20on%20Sequential%20GP-SOONE%20Method%20and%20Eigenvalue%20Decomposition&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hashempour,%20Hamid%20Reza&rft.date=2019-06-01&rft.volume=19&rft.issue=11&rft.spage=4045&rft.epage=4053&rft.pages=4045-4053&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2899112&rft_dat=%3Cproquest_cross%3E2220401232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2220401232&rft_id=info:pmid/&rft_ieee_id=8641330&rfr_iscdi=true |