Loading…

Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition

A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2019-06, Vol.19 (11), p.4045-4053
Main Authors: Hashempour, Hamid Reza, Sheikhi, Abbas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023
cites cdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023
container_end_page 4053
container_issue 11
container_start_page 4045
container_title IEEE sensors journal
container_volume 19
creator Hashempour, Hamid Reza
Sheikhi, Abbas
description A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.
doi_str_mv 10.1109/JSEN.2019.2899112
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2019_2899112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641330</ieee_id><sourcerecordid>2220401232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6WOKfYjvM6ljaUoj4QKRK3yHHWIVVjlzip1AP_TkIRp33NzO4OQreUjCgl0cNLEq9GjNBoxMIoopSdoQH1vNChAQ_P-9wlDneDj0t0Ze2WdMjACwboe3rUoiolnifjNzyvRFHqAgud43HbGGVka_uGUXgpNLQHqPtyI-oCGosfhYUcG40T-GpBN6XY4dmrk6zXqxgvofk0-a9WXBagD2LXAp6CNNXe2LIpjb5GF0rsLNz8xSF6f4o3k2dnsZ7NJ-OFI10vahwVSOYLyYHkGZG-pxjpBhQEo4L7PuO-9LMsp4pFSmSk-0yRKOdewDkjPmHuEN2fdPe16Q61Tbo1ba27lSljjHBCmduj6Akla2NtDSrd12Ul6mNKSdq7nPYup73L6Z_LHefuxCkB4B8f-py6LnF_ADOLeI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220401232</pqid></control><display><type>article</type><title>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hashempour, Hamid Reza ; Sheikhi, Abbas</creator><creatorcontrib>Hashempour, Hamid Reza ; Sheikhi, Abbas</creatorcontrib><description>A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2899112</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; autofocus ; Blurring ; Computer simulation ; Decomposition ; eigenvalue decomposition ; Eigenvalues ; Heuristic algorithms ; High resolution ; Image resolution ; Imaging ; Inverse synthetic aperture radar ; Inverse synthetic aperture radar (ISAR) ; Maneuvering targets ; Matching pursuit algorithms ; Radar imaging ; Sensors ; sequential order one negative exponential (SOONE) function ; Signal processing algorithms ; Signal resolution ; sparse matrix recovery ; Two dimensional displays</subject><ispartof>IEEE sensors journal, 2019-06, Vol.19 (11), p.4045-4053</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</citedby><cites>FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</cites><orcidid>0000-0003-1041-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hashempour, Hamid Reza</creatorcontrib><creatorcontrib>Sheikhi, Abbas</creatorcontrib><title>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.</description><subject>Algorithms</subject><subject>autofocus</subject><subject>Blurring</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>eigenvalue decomposition</subject><subject>Eigenvalues</subject><subject>Heuristic algorithms</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Inverse synthetic aperture radar</subject><subject>Inverse synthetic aperture radar (ISAR)</subject><subject>Maneuvering targets</subject><subject>Matching pursuit algorithms</subject><subject>Radar imaging</subject><subject>Sensors</subject><subject>sequential order one negative exponential (SOONE) function</subject><subject>Signal processing algorithms</subject><subject>Signal resolution</subject><subject>sparse matrix recovery</subject><subject>Two dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMIHIC6WOKfYjvM6ljaUoj4QKRK3yHHWIVVjlzip1AP_TkIRp33NzO4OQreUjCgl0cNLEq9GjNBoxMIoopSdoQH1vNChAQ_P-9wlDneDj0t0Ze2WdMjACwboe3rUoiolnifjNzyvRFHqAgud43HbGGVka_uGUXgpNLQHqPtyI-oCGosfhYUcG40T-GpBN6XY4dmrk6zXqxgvofk0-a9WXBagD2LXAp6CNNXe2LIpjb5GF0rsLNz8xSF6f4o3k2dnsZ7NJ-OFI10vahwVSOYLyYHkGZG-pxjpBhQEo4L7PuO-9LMsp4pFSmSk-0yRKOdewDkjPmHuEN2fdPe16Q61Tbo1ba27lSljjHBCmduj6Akla2NtDSrd12Ul6mNKSdq7nPYup73L6Z_LHefuxCkB4B8f-py6LnF_ADOLeI8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hashempour, Hamid Reza</creator><creator>Sheikhi, Abbas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1041-3012</orcidid></search><sort><creationdate>20190601</creationdate><title>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</title><author>Hashempour, Hamid Reza ; Sheikhi, Abbas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>autofocus</topic><topic>Blurring</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>eigenvalue decomposition</topic><topic>Eigenvalues</topic><topic>Heuristic algorithms</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Inverse synthetic aperture radar</topic><topic>Inverse synthetic aperture radar (ISAR)</topic><topic>Maneuvering targets</topic><topic>Matching pursuit algorithms</topic><topic>Radar imaging</topic><topic>Sensors</topic><topic>sequential order one negative exponential (SOONE) function</topic><topic>Signal processing algorithms</topic><topic>Signal resolution</topic><topic>sparse matrix recovery</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashempour, Hamid Reza</creatorcontrib><creatorcontrib>Sheikhi, Abbas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashempour, Hamid Reza</au><au>Sheikhi, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>19</volume><issue>11</issue><spage>4045</spage><epage>4053</epage><pages>4045-4053</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A long coherent processing interval (CPI) is needed for achieving a high-resolution inverse synthetic aperture radar (ISAR) image. However, for a maneuvering target, the time-varying Doppler shifts cause a blurring effect on the ISAR image. Sparse representation-based algorithms can obtain a high-resolution image in a short CPI, while the Doppler shifts remain constant. Recently, a sequential order one negative exponential (SOONE) function has been introduced to measure the sparsity, and a gradient projection (GP) method has been used to solve the SOONE function and recover the sparse signal. In this paper, a 2D sequential GP-SOONE method for sparse recovery and dynamic ISAR imaging is proposed, which has a lower computational complexity than that of the 2D-GP-SOONE algorithm. Moreover, the performance of the proposed approach is the same as the 2D-GP-SOONE and better than the 2D smoothed L0 algorithm. Another problem of dynamic ISAR imaging is sequentially autofocusing the image. Hence, a fast parametric method based on eigenvalue decomposition and minimum entropy for dynamic ISAR autofocusing is proposed which has a faster convergence than the conventional methods. The proposed method has also comparable performance with the conventional ones. Several simulations and real data are used to show the superiority of the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2899112</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1041-3012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-06, Vol.19 (11), p.4045-4053
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2019_2899112
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
autofocus
Blurring
Computer simulation
Decomposition
eigenvalue decomposition
Eigenvalues
Heuristic algorithms
High resolution
Image resolution
Imaging
Inverse synthetic aperture radar
Inverse synthetic aperture radar (ISAR)
Maneuvering targets
Matching pursuit algorithms
Radar imaging
Sensors
sequential order one negative exponential (SOONE) function
Signal processing algorithms
Signal resolution
sparse matrix recovery
Two dimensional displays
title Dynamic ISAR Imaging and Autofocusing of Maneuvering Targets Based on Sequential GP-SOONE Method and Eigenvalue Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20ISAR%20Imaging%20and%20Autofocusing%20of%20Maneuvering%20Targets%20Based%20on%20Sequential%20GP-SOONE%20Method%20and%20Eigenvalue%20Decomposition&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hashempour,%20Hamid%20Reza&rft.date=2019-06-01&rft.volume=19&rft.issue=11&rft.spage=4045&rft.epage=4053&rft.pages=4045-4053&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2899112&rft_dat=%3Cproquest_cross%3E2220401232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f7c26ac4e0db0c65f20c351ea21a466246c6bbd1f29fab0975f09d45744206023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2220401232&rft_id=info:pmid/&rft_ieee_id=8641330&rfr_iscdi=true