Loading…

Doppler Resilient Complementary Waveform Design for Active Sensing

Active sensing systems prefer probing waveforms with good auto-correlation properties. Faced with the difficulty in getting individual sequences with impulse-like aperiodic auto-correlation functions, we resort to the temporal waveform diversity based on complementary sets of sequences (CSS). It see...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2020-09, Vol.20 (17), p.9963-9976
Main Authors: Wu, Zhong-Jie, Zhou, Zhi-Quan, Wang, Chen-Xu, Li, Ying-Chun, Zhao, Zhan-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283
cites cdi_FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283
container_end_page 9976
container_issue 17
container_start_page 9963
container_title IEEE sensors journal
container_volume 20
creator Wu, Zhong-Jie
Zhou, Zhi-Quan
Wang, Chen-Xu
Li, Ying-Chun
Zhao, Zhan-Feng
description Active sensing systems prefer probing waveforms with good auto-correlation properties. Faced with the difficulty in getting individual sequences with impulse-like aperiodic auto-correlation functions, we resort to the temporal waveform diversity based on complementary sets of sequences (CSS). It seems an ideal solution, but has rarely been used due to the extreme sensitivity of CSS to Doppler shifts. This paper is devoted to applying numerical methods to the design of Doppler resilient complementary waveforms (DRCW) whose ambiguity functions are almost free of range sidelobes along modest Doppler shifts. We formulate the problem as minimizing the worst-case peak sidelobe level (PSL) with low peak-to-average power ratio (PAR) constraints, and then approximate the min-max problem by a {l}_{p} -norm minimization problem. A hierarchical strategy is developed to tackle the phase optimization and the amplitude-phase optimization respectively. Correspondingly, two algorithms based on phase-gradient and Majorization-Minimization are proposed, both of which can be efficiently computed via FFT. Numerical experiments show our method is effective and superior to existing ones. The DRCWs thus obtained have their range sidelobes at all lags suppressed below −60dB, and are expected to bring significant performance improvements in active sensing. Two application examples, detecting weak targets in heavy clutter and estimating the high-resolution range profile of an extended target by active radars, are given.
doi_str_mv 10.1109/JSEN.2020.2976525
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2020_2976525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9018020</ieee_id><sourcerecordid>2431704316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKs_QHwJ-LxrJtlsksfa1htFwSr6Fna3s2VL92KyLfjvzdLiy8xh-M4Mcwi5BhYDMHP3spy_xpxxFnOjUsnlCRmBlDoClejTQQsWJUJ9n5ML7zeMgVFSjcj9rO26LTr6jr7aVtj0dNrWYVIHmblf-pXtsWxdTWcBWDc0aDop-mqPdImNr5r1JTkrs63Hq2Mfk8-H-cf0KVq8PT5PJ4uo4Eb0kcx4zssUFM_VSgiNUqscVCkF5loJxg3TZbIyRoDMiiywphBpknANxcpwLcbk9rC3c-3PDn1vN-3ONeGk5YkAxUJJAwUHqnCt9w5L27mqDp9YYHaIyg5R2SEqe4wqeG4OngoR_3nDQAdK_AFpIWPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431704316</pqid></control><display><type>article</type><title>Doppler Resilient Complementary Waveform Design for Active Sensing</title><source>IEEE Xplore (Online service)</source><creator>Wu, Zhong-Jie ; Zhou, Zhi-Quan ; Wang, Chen-Xu ; Li, Ying-Chun ; Zhao, Zhan-Feng</creator><creatorcontrib>Wu, Zhong-Jie ; Zhou, Zhi-Quan ; Wang, Chen-Xu ; Li, Ying-Chun ; Zhao, Zhan-Feng</creatorcontrib><description>Active sensing systems prefer probing waveforms with good auto-correlation properties. Faced with the difficulty in getting individual sequences with impulse-like aperiodic auto-correlation functions, we resort to the temporal waveform diversity based on complementary sets of sequences (CSS). It seems an ideal solution, but has rarely been used due to the extreme sensitivity of CSS to Doppler shifts. This paper is devoted to applying numerical methods to the design of Doppler resilient complementary waveforms (DRCW) whose ambiguity functions are almost free of range sidelobes along modest Doppler shifts. We formulate the problem as minimizing the worst-case peak sidelobe level (PSL) with low peak-to-average power ratio (PAR) constraints, and then approximate the min-max problem by a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{l}_{p} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm minimization problem. A hierarchical strategy is developed to tackle the phase optimization and the amplitude-phase optimization respectively. Correspondingly, two algorithms based on phase-gradient and Majorization-Minimization are proposed, both of which can be efficiently computed via FFT. Numerical experiments show our method is effective and superior to existing ones. The DRCWs thus obtained have their range sidelobes at all lags suppressed below −60dB, and are expected to bring significant performance improvements in active sensing. Two application examples, detecting weak targets in heavy clutter and estimating the high-resolution range profile of an extended target by active radars, are given.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2976525</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; auto-correlation ; Autocorrelation ; Clutter ; complementary sets ; Correlation ; Detection ; Doppler radar ; Doppler resilience ; Doppler shift ; Fast Fourier transforms ; Minimax techniques ; Numerical methods ; Optimization ; peak-to-average power ratio (PAR) ; Radar waveform design and diversity ; Sidelobe reduction ; Sidelobes ; Target detection ; unimodular sequences ; Waveforms</subject><ispartof>IEEE sensors journal, 2020-09, Vol.20 (17), p.9963-9976</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283</citedby><cites>FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283</cites><orcidid>0000-0002-3438-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9018020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wu, Zhong-Jie</creatorcontrib><creatorcontrib>Zhou, Zhi-Quan</creatorcontrib><creatorcontrib>Wang, Chen-Xu</creatorcontrib><creatorcontrib>Li, Ying-Chun</creatorcontrib><creatorcontrib>Zhao, Zhan-Feng</creatorcontrib><title>Doppler Resilient Complementary Waveform Design for Active Sensing</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Active sensing systems prefer probing waveforms with good auto-correlation properties. Faced with the difficulty in getting individual sequences with impulse-like aperiodic auto-correlation functions, we resort to the temporal waveform diversity based on complementary sets of sequences (CSS). It seems an ideal solution, but has rarely been used due to the extreme sensitivity of CSS to Doppler shifts. This paper is devoted to applying numerical methods to the design of Doppler resilient complementary waveforms (DRCW) whose ambiguity functions are almost free of range sidelobes along modest Doppler shifts. We formulate the problem as minimizing the worst-case peak sidelobe level (PSL) with low peak-to-average power ratio (PAR) constraints, and then approximate the min-max problem by a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{l}_{p} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm minimization problem. A hierarchical strategy is developed to tackle the phase optimization and the amplitude-phase optimization respectively. Correspondingly, two algorithms based on phase-gradient and Majorization-Minimization are proposed, both of which can be efficiently computed via FFT. Numerical experiments show our method is effective and superior to existing ones. The DRCWs thus obtained have their range sidelobes at all lags suppressed below −60dB, and are expected to bring significant performance improvements in active sensing. Two application examples, detecting weak targets in heavy clutter and estimating the high-resolution range profile of an extended target by active radars, are given.</description><subject>Algorithms</subject><subject>auto-correlation</subject><subject>Autocorrelation</subject><subject>Clutter</subject><subject>complementary sets</subject><subject>Correlation</subject><subject>Detection</subject><subject>Doppler radar</subject><subject>Doppler resilience</subject><subject>Doppler shift</subject><subject>Fast Fourier transforms</subject><subject>Minimax techniques</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>peak-to-average power ratio (PAR)</subject><subject>Radar waveform design and diversity</subject><subject>Sidelobe reduction</subject><subject>Sidelobes</subject><subject>Target detection</subject><subject>unimodular sequences</subject><subject>Waveforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWKs_QHwJ-LxrJtlsksfa1htFwSr6Fna3s2VL92KyLfjvzdLiy8xh-M4Mcwi5BhYDMHP3spy_xpxxFnOjUsnlCRmBlDoClejTQQsWJUJ9n5ML7zeMgVFSjcj9rO26LTr6jr7aVtj0dNrWYVIHmblf-pXtsWxdTWcBWDc0aDop-mqPdImNr5r1JTkrs63Hq2Mfk8-H-cf0KVq8PT5PJ4uo4Eb0kcx4zssUFM_VSgiNUqscVCkF5loJxg3TZbIyRoDMiiywphBpknANxcpwLcbk9rC3c-3PDn1vN-3ONeGk5YkAxUJJAwUHqnCt9w5L27mqDp9YYHaIyg5R2SEqe4wqeG4OngoR_3nDQAdK_AFpIWPN</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wu, Zhong-Jie</creator><creator>Zhou, Zhi-Quan</creator><creator>Wang, Chen-Xu</creator><creator>Li, Ying-Chun</creator><creator>Zhao, Zhan-Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3438-9865</orcidid></search><sort><creationdate>20200901</creationdate><title>Doppler Resilient Complementary Waveform Design for Active Sensing</title><author>Wu, Zhong-Jie ; Zhou, Zhi-Quan ; Wang, Chen-Xu ; Li, Ying-Chun ; Zhao, Zhan-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>auto-correlation</topic><topic>Autocorrelation</topic><topic>Clutter</topic><topic>complementary sets</topic><topic>Correlation</topic><topic>Detection</topic><topic>Doppler radar</topic><topic>Doppler resilience</topic><topic>Doppler shift</topic><topic>Fast Fourier transforms</topic><topic>Minimax techniques</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>peak-to-average power ratio (PAR)</topic><topic>Radar waveform design and diversity</topic><topic>Sidelobe reduction</topic><topic>Sidelobes</topic><topic>Target detection</topic><topic>unimodular sequences</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhong-Jie</creatorcontrib><creatorcontrib>Zhou, Zhi-Quan</creatorcontrib><creatorcontrib>Wang, Chen-Xu</creatorcontrib><creatorcontrib>Li, Ying-Chun</creatorcontrib><creatorcontrib>Zhao, Zhan-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhong-Jie</au><au>Zhou, Zhi-Quan</au><au>Wang, Chen-Xu</au><au>Li, Ying-Chun</au><au>Zhao, Zhan-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doppler Resilient Complementary Waveform Design for Active Sensing</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>20</volume><issue>17</issue><spage>9963</spage><epage>9976</epage><pages>9963-9976</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Active sensing systems prefer probing waveforms with good auto-correlation properties. Faced with the difficulty in getting individual sequences with impulse-like aperiodic auto-correlation functions, we resort to the temporal waveform diversity based on complementary sets of sequences (CSS). It seems an ideal solution, but has rarely been used due to the extreme sensitivity of CSS to Doppler shifts. This paper is devoted to applying numerical methods to the design of Doppler resilient complementary waveforms (DRCW) whose ambiguity functions are almost free of range sidelobes along modest Doppler shifts. We formulate the problem as minimizing the worst-case peak sidelobe level (PSL) with low peak-to-average power ratio (PAR) constraints, and then approximate the min-max problem by a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{l}_{p} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm minimization problem. A hierarchical strategy is developed to tackle the phase optimization and the amplitude-phase optimization respectively. Correspondingly, two algorithms based on phase-gradient and Majorization-Minimization are proposed, both of which can be efficiently computed via FFT. Numerical experiments show our method is effective and superior to existing ones. The DRCWs thus obtained have their range sidelobes at all lags suppressed below −60dB, and are expected to bring significant performance improvements in active sensing. Two application examples, detecting weak targets in heavy clutter and estimating the high-resolution range profile of an extended target by active radars, are given.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2976525</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3438-9865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-09, Vol.20 (17), p.9963-9976
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2020_2976525
source IEEE Xplore (Online service)
subjects Algorithms
auto-correlation
Autocorrelation
Clutter
complementary sets
Correlation
Detection
Doppler radar
Doppler resilience
Doppler shift
Fast Fourier transforms
Minimax techniques
Numerical methods
Optimization
peak-to-average power ratio (PAR)
Radar waveform design and diversity
Sidelobe reduction
Sidelobes
Target detection
unimodular sequences
Waveforms
title Doppler Resilient Complementary Waveform Design for Active Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doppler%20Resilient%20Complementary%20Waveform%20Design%20for%20Active%20Sensing&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wu,%20Zhong-Jie&rft.date=2020-09-01&rft.volume=20&rft.issue=17&rft.spage=9963&rft.epage=9976&rft.pages=9963-9976&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2976525&rft_dat=%3Cproquest_cross%3E2431704316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-5a2b2f6172b7d338e587b17f53eb87302908f4d99315acab2f9c3644281cd9283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2431704316&rft_id=info:pmid/&rft_ieee_id=9018020&rfr_iscdi=true