Loading…

A Novel Posture Positioning Method for Multi-Joint Manipulators

Safety and automatic control are extremely important when operating manipulators. For large engineering manipulators, the main challenge is to accurately recognize the posture of all arm segments. In classical sensing methods, the accuracy of an inclinometer is easily affected by the elastic deforma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2020-12, Vol.20 (23), p.14310-14316
Main Authors: Yao, Zhiqiang, Dai, Yijue, Li, Qing-Na, Xie, Dang, Liu, Ze-Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Safety and automatic control are extremely important when operating manipulators. For large engineering manipulators, the main challenge is to accurately recognize the posture of all arm segments. In classical sensing methods, the accuracy of an inclinometer is easily affected by the elastic deformation in the manipulator's arms. This results in big error accumulations when sensing the angle of joints between arms one by one. In addition, the sensing method based on machine vision is not suitable for such kind of outdoor working situation yet. In this paper, we propose a novel posture positioning method for multi-joint manipulators based on wireless sensor network localization. The posture sensing problem is formulated as a Nearest-Euclidean-Distance-Matrix (NEDM) model. The resulting approach is referred to as EDM-based posture positioning approach (EPP) and it satisfies the following guiding principles: (i) The posture of each arm segment on a multi-joint manipulator must be estimated as accurately as possible; (ii) The approach must be computationally fast; (iii) The designed approach should not be susceptible to obstructions. To further improve accuracy, we explore the inherent structure of manipulators, i.e., fixed-arm length. This is naturally presented as linear constraints in the NEDM model. For concrete pumps, a typical multi-joint manipulator, the mechanical property that all arm segments always lie in a 2D plane is used for dimension-reduction operation. Simulation and experimental results show that the proposed method provides efficient solutions for posture sensing problem and can obtain preferable localization performance with faster speed than applying the existing localization methods.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2020.3007701