Loading…

Fiber Bragg Grating-Based Pulse Monitoring Device for Real-Time Non-Invasive Blood Pressure Measurement-A Feasibility Study

The real-time, continuous, beat-to-beat blood pressure (BP) monitoring is vital in clinical scenarios such as operations theatres, ambulances etc. In the present study, a non-invasive BP monitoring methodology based on Fiber Bragg Grating sensors is reported. The design and development of Fiber Brag...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2021-04, Vol.21 (7), p.9179-9185
Main Authors: Kumar, N. Vajresh, Pant, Shweta, Sridhar, S., Marulasiddappa, Vinay, Srivatzen, S., Asokan, Sundarrajan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The real-time, continuous, beat-to-beat blood pressure (BP) monitoring is vital in clinical scenarios such as operations theatres, ambulances etc. In the present study, a non-invasive BP monitoring methodology based on Fiber Bragg Grating sensors is reported. The design and development of Fiber Bragg Grating based Pulse Monitoring Device (FBGPM) is demonstrated which is capable of acquiring the radial arterial pulse pressure waveform effectively in real time. The Radial Arterial Pulse Pressure Waveform is acquired on beat to beat basis employing developed FBGPM in a clinical environment. Further, the recorded radial arterial pulse pressure waveform is processed to obtain systolic and diastolic BP by utilizing a standard non-invasive BP measurement device as a reference. The BP values obtained through FBGPM are then compared with the BP values obtained through an Intra-Arterial (IA) probe. The FBGPM is a chemically and electrically inert device which makes it an effective candidate for monitoring the real-time BP. The focus of the study is to demonstrate the feasibility of deploying developed FBGPM device in clinical environment to acquire beat-to-beat BP and subsequently compare the present device to the IA probe method of BP acquisition.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2021.3055245