Loading…

Basic Aspects in the Application of QCMs as Sensors: A Tutorial

Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-06, Vol.22 (11), p.10163-10172
Main Authors: Murrieta-Rico, Fabian N., Petranovskii, Vitalii, Galvan, Donald Homero, Antunez-Garcia, Joel, Sergiyenko, Oleg, Lindner, Lars, Rivas-Lopez, Moises, Grishin, Maxim, Sarvadii, Sergey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3
cites cdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3
container_end_page 10172
container_issue 11
container_start_page 10163
container_title IEEE sensors journal
container_volume 22
creator Murrieta-Rico, Fabian N.
Petranovskii, Vitalii
Galvan, Donald Homero
Antunez-Garcia, Joel
Sergiyenko, Oleg
Lindner, Lars
Rivas-Lopez, Moises
Grishin, Maxim
Sarvadii, Sergey
description Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.
doi_str_mv 10.1109/JSEN.2022.3148039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3148039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9698046</ieee_id><sourcerecordid>2672088641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKsPIG4CrqeeXCYXNzKW1gtVkVZwF9JMBqfUyZhMF769M7S4Ov-B7z8HPoQuCUwIAX3zvJy9TihQOmGEK2D6CI1InquMSK6Oh8wg40x-nqKzlDYARMtcjtDdvU21w0VqvesSrhvcfXlctO22drarQ4NDhd-nLwnbhJe-SSGmW1zg1a4Lsbbbc3RS2W3yF4c5Rh_z2Wr6mC3eHp6mxSJzVOku01SzKs_Xosph7XRZ9psXHChwKUtplShBMy7AOkdLK0vFtaZrwaQQUvuSjdH1_m4bw8_Op85swi42_UtDhaSglOCkp8iecjGkFH1l2lh_2_hrCJjBkxk8mcGTOXjqO1f7Tu29_-e10Aq4YH-UxmGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088641</pqid></control><display><type>article</type><title>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Murrieta-Rico, Fabian N. ; Petranovskii, Vitalii ; Galvan, Donald Homero ; Antunez-Garcia, Joel ; Sergiyenko, Oleg ; Lindner, Lars ; Rivas-Lopez, Moises ; Grishin, Maxim ; Sarvadii, Sergey</creator><creatorcontrib>Murrieta-Rico, Fabian N. ; Petranovskii, Vitalii ; Galvan, Donald Homero ; Antunez-Garcia, Joel ; Sergiyenko, Oleg ; Lindner, Lars ; Rivas-Lopez, Moises ; Grishin, Maxim ; Sarvadii, Sergey</creatorcontrib><description>Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3148039</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical sensors ; Frequency measurement ; Frequency shift ; gas sensors ; Loading ; Powders ; QCM ; Quartz crystals ; Resonant frequency ; Selective adsorption ; Sensors ; Surface cleaning ; Surface topography ; Tutorials ; Water vapor ; Wiring</subject><ispartof>IEEE sensors journal, 2022-06, Vol.22 (11), p.10163-10172</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</citedby><cites>FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</cites><orcidid>0000-0001-9829-3013 ; 0000-0003-4270-6872 ; 0000-0002-0623-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9698046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Murrieta-Rico, Fabian N.</creatorcontrib><creatorcontrib>Petranovskii, Vitalii</creatorcontrib><creatorcontrib>Galvan, Donald Homero</creatorcontrib><creatorcontrib>Antunez-Garcia, Joel</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><creatorcontrib>Lindner, Lars</creatorcontrib><creatorcontrib>Rivas-Lopez, Moises</creatorcontrib><creatorcontrib>Grishin, Maxim</creatorcontrib><creatorcontrib>Sarvadii, Sergey</creatorcontrib><title>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.</description><subject>Chemical sensors</subject><subject>Frequency measurement</subject><subject>Frequency shift</subject><subject>gas sensors</subject><subject>Loading</subject><subject>Powders</subject><subject>QCM</subject><subject>Quartz crystals</subject><subject>Resonant frequency</subject><subject>Selective adsorption</subject><subject>Sensors</subject><subject>Surface cleaning</subject><subject>Surface topography</subject><subject>Tutorials</subject><subject>Water vapor</subject><subject>Wiring</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWKsPIG4CrqeeXCYXNzKW1gtVkVZwF9JMBqfUyZhMF769M7S4Ov-B7z8HPoQuCUwIAX3zvJy9TihQOmGEK2D6CI1InquMSK6Oh8wg40x-nqKzlDYARMtcjtDdvU21w0VqvesSrhvcfXlctO22drarQ4NDhd-nLwnbhJe-SSGmW1zg1a4Lsbbbc3RS2W3yF4c5Rh_z2Wr6mC3eHp6mxSJzVOku01SzKs_Xosph7XRZ9psXHChwKUtplShBMy7AOkdLK0vFtaZrwaQQUvuSjdH1_m4bw8_Op85swi42_UtDhaSglOCkp8iecjGkFH1l2lh_2_hrCJjBkxk8mcGTOXjqO1f7Tu29_-e10Aq4YH-UxmGB</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Murrieta-Rico, Fabian N.</creator><creator>Petranovskii, Vitalii</creator><creator>Galvan, Donald Homero</creator><creator>Antunez-Garcia, Joel</creator><creator>Sergiyenko, Oleg</creator><creator>Lindner, Lars</creator><creator>Rivas-Lopez, Moises</creator><creator>Grishin, Maxim</creator><creator>Sarvadii, Sergey</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9829-3013</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-0623-6976</orcidid></search><sort><creationdate>20220601</creationdate><title>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</title><author>Murrieta-Rico, Fabian N. ; Petranovskii, Vitalii ; Galvan, Donald Homero ; Antunez-Garcia, Joel ; Sergiyenko, Oleg ; Lindner, Lars ; Rivas-Lopez, Moises ; Grishin, Maxim ; Sarvadii, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical sensors</topic><topic>Frequency measurement</topic><topic>Frequency shift</topic><topic>gas sensors</topic><topic>Loading</topic><topic>Powders</topic><topic>QCM</topic><topic>Quartz crystals</topic><topic>Resonant frequency</topic><topic>Selective adsorption</topic><topic>Sensors</topic><topic>Surface cleaning</topic><topic>Surface topography</topic><topic>Tutorials</topic><topic>Water vapor</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murrieta-Rico, Fabian N.</creatorcontrib><creatorcontrib>Petranovskii, Vitalii</creatorcontrib><creatorcontrib>Galvan, Donald Homero</creatorcontrib><creatorcontrib>Antunez-Garcia, Joel</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><creatorcontrib>Lindner, Lars</creatorcontrib><creatorcontrib>Rivas-Lopez, Moises</creatorcontrib><creatorcontrib>Grishin, Maxim</creatorcontrib><creatorcontrib>Sarvadii, Sergey</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murrieta-Rico, Fabian N.</au><au>Petranovskii, Vitalii</au><au>Galvan, Donald Homero</au><au>Antunez-Garcia, Joel</au><au>Sergiyenko, Oleg</au><au>Lindner, Lars</au><au>Rivas-Lopez, Moises</au><au>Grishin, Maxim</au><au>Sarvadii, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>10163</spage><epage>10172</epage><pages>10163-10172</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3148039</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9829-3013</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-0623-6976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-06, Vol.22 (11), p.10163-10172
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2022_3148039
source IEEE Electronic Library (IEL) Journals
subjects Chemical sensors
Frequency measurement
Frequency shift
gas sensors
Loading
Powders
QCM
Quartz crystals
Resonant frequency
Selective adsorption
Sensors
Surface cleaning
Surface topography
Tutorials
Water vapor
Wiring
title Basic Aspects in the Application of QCMs as Sensors: A Tutorial
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20Aspects%20in%20the%20Application%20of%20QCMs%20as%20Sensors:%20A%20Tutorial&rft.jtitle=IEEE%20sensors%20journal&rft.au=Murrieta-Rico,%20Fabian%20N.&rft.date=2022-06-01&rft.volume=22&rft.issue=11&rft.spage=10163&rft.epage=10172&rft.pages=10163-10172&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3148039&rft_dat=%3Cproquest_cross%3E2672088641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672088641&rft_id=info:pmid/&rft_ieee_id=9698046&rfr_iscdi=true