Loading…
Basic Aspects in the Application of QCMs as Sensors: A Tutorial
Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sen...
Saved in:
Published in: | IEEE sensors journal 2022-06, Vol.22 (11), p.10163-10172 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3 |
container_end_page | 10172 |
container_issue | 11 |
container_start_page | 10163 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Murrieta-Rico, Fabian N. Petranovskii, Vitalii Galvan, Donald Homero Antunez-Garcia, Joel Sergiyenko, Oleg Lindner, Lars Rivas-Lopez, Moises Grishin, Maxim Sarvadii, Sergey |
description | Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor. |
doi_str_mv | 10.1109/JSEN.2022.3148039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3148039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9698046</ieee_id><sourcerecordid>2672088641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKsPIG4CrqeeXCYXNzKW1gtVkVZwF9JMBqfUyZhMF769M7S4Ov-B7z8HPoQuCUwIAX3zvJy9TihQOmGEK2D6CI1InquMSK6Oh8wg40x-nqKzlDYARMtcjtDdvU21w0VqvesSrhvcfXlctO22drarQ4NDhd-nLwnbhJe-SSGmW1zg1a4Lsbbbc3RS2W3yF4c5Rh_z2Wr6mC3eHp6mxSJzVOku01SzKs_Xosph7XRZ9psXHChwKUtplShBMy7AOkdLK0vFtaZrwaQQUvuSjdH1_m4bw8_Op85swi42_UtDhaSglOCkp8iecjGkFH1l2lh_2_hrCJjBkxk8mcGTOXjqO1f7Tu29_-e10Aq4YH-UxmGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088641</pqid></control><display><type>article</type><title>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Murrieta-Rico, Fabian N. ; Petranovskii, Vitalii ; Galvan, Donald Homero ; Antunez-Garcia, Joel ; Sergiyenko, Oleg ; Lindner, Lars ; Rivas-Lopez, Moises ; Grishin, Maxim ; Sarvadii, Sergey</creator><creatorcontrib>Murrieta-Rico, Fabian N. ; Petranovskii, Vitalii ; Galvan, Donald Homero ; Antunez-Garcia, Joel ; Sergiyenko, Oleg ; Lindner, Lars ; Rivas-Lopez, Moises ; Grishin, Maxim ; Sarvadii, Sergey</creatorcontrib><description>Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3148039</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical sensors ; Frequency measurement ; Frequency shift ; gas sensors ; Loading ; Powders ; QCM ; Quartz crystals ; Resonant frequency ; Selective adsorption ; Sensors ; Surface cleaning ; Surface topography ; Tutorials ; Water vapor ; Wiring</subject><ispartof>IEEE sensors journal, 2022-06, Vol.22 (11), p.10163-10172</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</citedby><cites>FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</cites><orcidid>0000-0001-9829-3013 ; 0000-0003-4270-6872 ; 0000-0002-0623-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9698046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Murrieta-Rico, Fabian N.</creatorcontrib><creatorcontrib>Petranovskii, Vitalii</creatorcontrib><creatorcontrib>Galvan, Donald Homero</creatorcontrib><creatorcontrib>Antunez-Garcia, Joel</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><creatorcontrib>Lindner, Lars</creatorcontrib><creatorcontrib>Rivas-Lopez, Moises</creatorcontrib><creatorcontrib>Grishin, Maxim</creatorcontrib><creatorcontrib>Sarvadii, Sergey</creatorcontrib><title>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.</description><subject>Chemical sensors</subject><subject>Frequency measurement</subject><subject>Frequency shift</subject><subject>gas sensors</subject><subject>Loading</subject><subject>Powders</subject><subject>QCM</subject><subject>Quartz crystals</subject><subject>Resonant frequency</subject><subject>Selective adsorption</subject><subject>Sensors</subject><subject>Surface cleaning</subject><subject>Surface topography</subject><subject>Tutorials</subject><subject>Water vapor</subject><subject>Wiring</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWKsPIG4CrqeeXCYXNzKW1gtVkVZwF9JMBqfUyZhMF769M7S4Ov-B7z8HPoQuCUwIAX3zvJy9TihQOmGEK2D6CI1InquMSK6Oh8wg40x-nqKzlDYARMtcjtDdvU21w0VqvesSrhvcfXlctO22drarQ4NDhd-nLwnbhJe-SSGmW1zg1a4Lsbbbc3RS2W3yF4c5Rh_z2Wr6mC3eHp6mxSJzVOku01SzKs_Xosph7XRZ9psXHChwKUtplShBMy7AOkdLK0vFtaZrwaQQUvuSjdH1_m4bw8_Op85swi42_UtDhaSglOCkp8iecjGkFH1l2lh_2_hrCJjBkxk8mcGTOXjqO1f7Tu29_-e10Aq4YH-UxmGB</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Murrieta-Rico, Fabian N.</creator><creator>Petranovskii, Vitalii</creator><creator>Galvan, Donald Homero</creator><creator>Antunez-Garcia, Joel</creator><creator>Sergiyenko, Oleg</creator><creator>Lindner, Lars</creator><creator>Rivas-Lopez, Moises</creator><creator>Grishin, Maxim</creator><creator>Sarvadii, Sergey</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9829-3013</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-0623-6976</orcidid></search><sort><creationdate>20220601</creationdate><title>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</title><author>Murrieta-Rico, Fabian N. ; Petranovskii, Vitalii ; Galvan, Donald Homero ; Antunez-Garcia, Joel ; Sergiyenko, Oleg ; Lindner, Lars ; Rivas-Lopez, Moises ; Grishin, Maxim ; Sarvadii, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical sensors</topic><topic>Frequency measurement</topic><topic>Frequency shift</topic><topic>gas sensors</topic><topic>Loading</topic><topic>Powders</topic><topic>QCM</topic><topic>Quartz crystals</topic><topic>Resonant frequency</topic><topic>Selective adsorption</topic><topic>Sensors</topic><topic>Surface cleaning</topic><topic>Surface topography</topic><topic>Tutorials</topic><topic>Water vapor</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murrieta-Rico, Fabian N.</creatorcontrib><creatorcontrib>Petranovskii, Vitalii</creatorcontrib><creatorcontrib>Galvan, Donald Homero</creatorcontrib><creatorcontrib>Antunez-Garcia, Joel</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><creatorcontrib>Lindner, Lars</creatorcontrib><creatorcontrib>Rivas-Lopez, Moises</creatorcontrib><creatorcontrib>Grishin, Maxim</creatorcontrib><creatorcontrib>Sarvadii, Sergey</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murrieta-Rico, Fabian N.</au><au>Petranovskii, Vitalii</au><au>Galvan, Donald Homero</au><au>Antunez-Garcia, Joel</au><au>Sergiyenko, Oleg</au><au>Lindner, Lars</au><au>Rivas-Lopez, Moises</au><au>Grishin, Maxim</au><au>Sarvadii, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic Aspects in the Application of QCMs as Sensors: A Tutorial</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>10163</spage><epage>10172</epage><pages>10163-10172</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Quartz crystal microbalances (QCMs) are devices that have been proven to function as sensors for detecting specific chemical species; this usually requires that the QCM is modified with a material that is capable to interact with the desired compound. Zeolites are an example of materials used as sensitive layer. This due to their capacity for selective adsorption and large surface area; moreover, they can grow directly on the QCM surface. After, the interaction between sensitive layer and analyte, there is a mass change on the QCM surface, which induces a frequency shift in the frequency generated by the QCM. However, the application of QCMs requires that some factors are considered, such as QCM functioning, wiring and surface functionalization. Even when there are commercial devices for QCM operation, a literature revision shows that some concepts are not understood, or some misconceptions are observed. In this work, the basics of QCM are discussed, from principles of operation to an application where a QCM was functionalized to work as sensor for water vapor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3148039</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9829-3013</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-0623-6976</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-06, Vol.22 (11), p.10163-10172 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2022_3148039 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Chemical sensors Frequency measurement Frequency shift gas sensors Loading Powders QCM Quartz crystals Resonant frequency Selective adsorption Sensors Surface cleaning Surface topography Tutorials Water vapor Wiring |
title | Basic Aspects in the Application of QCMs as Sensors: A Tutorial |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20Aspects%20in%20the%20Application%20of%20QCMs%20as%20Sensors:%20A%20Tutorial&rft.jtitle=IEEE%20sensors%20journal&rft.au=Murrieta-Rico,%20Fabian%20N.&rft.date=2022-06-01&rft.volume=22&rft.issue=11&rft.spage=10163&rft.epage=10172&rft.pages=10163-10172&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3148039&rft_dat=%3Cproquest_cross%3E2672088641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-9293f55b6f50bc9dd3f5e64020477d7a86d093460acc2da7d84992b6376679ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672088641&rft_id=info:pmid/&rft_ieee_id=9698046&rfr_iscdi=true |