Loading…

Recognition algorithms in E-nose: A Review

In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sens...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2023-09, Vol.23 (18), p.1-1
Main Authors: Yang, Xingan, Li, Meng, Ji, Xiaohua, Chang, Junqing, Deng, Zanhong, Meng, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063
cites cdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063
container_end_page 1
container_issue 18
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Yang, Xingan
Li, Meng
Ji, Xiaohua
Chang, Junqing
Deng, Zanhong
Meng, Gang
description In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.
doi_str_mv 10.1109/JSEN.2023.3302868
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3302868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10215322</ieee_id><sourcerecordid>2865091017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4E3YOkk2m8RbKfWLolAVvIU0na0p7aYm24r_3l3ag6eZw_POyzyEXFIYUAr69vlt_DJgwPiAc2CqVEekR4VQOZWFOu52DnnB5ecpOUtpCUC1FLJHbqbowqL2jQ91ZleLEH3ztU6Zr7NxXoeEd9kwm-LO4885OansKuHFYfbJx_34ffSYT14fnkbDSe44l01bokqhtQJnFWLFqLZalLqEuWOCzWmBVswqcJppFILP5silVFbJQjhaQMn75Hp_dxPD9xZTY5ZhG-u20rSPCdAUqGwpuqdcDClFrMwm-rWNv4aC6ZSYTonplJiDkjZztc94RPzHs9YOY_wPK6RaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865091017</pqid></control><display><type>article</type><title>Recognition algorithms in E-nose: A Review</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Xingan ; Li, Meng ; Ji, Xiaohua ; Chang, Junqing ; Deng, Zanhong ; Meng, Gang</creator><creatorcontrib>Yang, Xingan ; Li, Meng ; Ji, Xiaohua ; Chang, Junqing ; Deng, Zanhong ; Meng, Gang</creatorcontrib><description>In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3302868</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Classification algorithms ; Data mining ; E-nose ; Electronic noses ; Feature extraction ; gas molecule recognition ; machine learning ; Principal component analysis ; Recognition ; Sensor arrays ; Sensors ; Signal processing ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</citedby><cites>FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</cites><orcidid>0000-0002-3365-8963 ; 0009-0009-7890-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10215322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Yang, Xingan</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Ji, Xiaohua</creatorcontrib><creatorcontrib>Chang, Junqing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><title>Recognition algorithms in E-nose: A Review</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>E-nose</subject><subject>Electronic noses</subject><subject>Feature extraction</subject><subject>gas molecule recognition</subject><subject>machine learning</subject><subject>Principal component analysis</subject><subject>Recognition</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4E3YOkk2m8RbKfWLolAVvIU0na0p7aYm24r_3l3ag6eZw_POyzyEXFIYUAr69vlt_DJgwPiAc2CqVEekR4VQOZWFOu52DnnB5ecpOUtpCUC1FLJHbqbowqL2jQ91ZleLEH3ztU6Zr7NxXoeEd9kwm-LO4885OansKuHFYfbJx_34ffSYT14fnkbDSe44l01bokqhtQJnFWLFqLZalLqEuWOCzWmBVswqcJppFILP5silVFbJQjhaQMn75Hp_dxPD9xZTY5ZhG-u20rSPCdAUqGwpuqdcDClFrMwm-rWNv4aC6ZSYTonplJiDkjZztc94RPzHs9YOY_wPK6RaVQ</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Yang, Xingan</creator><creator>Li, Meng</creator><creator>Ji, Xiaohua</creator><creator>Chang, Junqing</creator><creator>Deng, Zanhong</creator><creator>Meng, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0009-0009-7890-0838</orcidid></search><sort><creationdate>20230915</creationdate><title>Recognition algorithms in E-nose: A Review</title><author>Yang, Xingan ; Li, Meng ; Ji, Xiaohua ; Chang, Junqing ; Deng, Zanhong ; Meng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>E-nose</topic><topic>Electronic noses</topic><topic>Feature extraction</topic><topic>gas molecule recognition</topic><topic>machine learning</topic><topic>Principal component analysis</topic><topic>Recognition</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xingan</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Ji, Xiaohua</creatorcontrib><creatorcontrib>Chang, Junqing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xingan</au><au>Li, Meng</au><au>Ji, Xiaohua</au><au>Chang, Junqing</au><au>Deng, Zanhong</au><au>Meng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition algorithms in E-nose: A Review</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-09-15</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3302868</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0009-0009-7890-0838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2023_3302868
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
artificial neural network
Artificial neural networks
Classification algorithms
Data mining
E-nose
Electronic noses
Feature extraction
gas molecule recognition
machine learning
Principal component analysis
Recognition
Sensor arrays
Sensors
Signal processing
Temperature measurement
Temperature sensors
title Recognition algorithms in E-nose: A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20algorithms%20in%20E-nose:%20A%20Review&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yang,%20Xingan&rft.date=2023-09-15&rft.volume=23&rft.issue=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3302868&rft_dat=%3Cproquest_cross%3E2865091017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865091017&rft_id=info:pmid/&rft_ieee_id=10215322&rfr_iscdi=true