Loading…
Recognition algorithms in E-nose: A Review
In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sens...
Saved in:
Published in: | IEEE sensors journal 2023-09, Vol.23 (18), p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063 |
container_end_page | 1 |
container_issue | 18 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Yang, Xingan Li, Meng Ji, Xiaohua Chang, Junqing Deng, Zanhong Meng, Gang |
description | In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose. |
doi_str_mv | 10.1109/JSEN.2023.3302868 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3302868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10215322</ieee_id><sourcerecordid>2865091017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4E3YOkk2m8RbKfWLolAVvIU0na0p7aYm24r_3l3ag6eZw_POyzyEXFIYUAr69vlt_DJgwPiAc2CqVEekR4VQOZWFOu52DnnB5ecpOUtpCUC1FLJHbqbowqL2jQ91ZleLEH3ztU6Zr7NxXoeEd9kwm-LO4885OansKuHFYfbJx_34ffSYT14fnkbDSe44l01bokqhtQJnFWLFqLZalLqEuWOCzWmBVswqcJppFILP5silVFbJQjhaQMn75Hp_dxPD9xZTY5ZhG-u20rSPCdAUqGwpuqdcDClFrMwm-rWNv4aC6ZSYTonplJiDkjZztc94RPzHs9YOY_wPK6RaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865091017</pqid></control><display><type>article</type><title>Recognition algorithms in E-nose: A Review</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Xingan ; Li, Meng ; Ji, Xiaohua ; Chang, Junqing ; Deng, Zanhong ; Meng, Gang</creator><creatorcontrib>Yang, Xingan ; Li, Meng ; Ji, Xiaohua ; Chang, Junqing ; Deng, Zanhong ; Meng, Gang</creatorcontrib><description>In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3302868</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Classification algorithms ; Data mining ; E-nose ; Electronic noses ; Feature extraction ; gas molecule recognition ; machine learning ; Principal component analysis ; Recognition ; Sensor arrays ; Sensors ; Signal processing ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</citedby><cites>FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</cites><orcidid>0000-0002-3365-8963 ; 0009-0009-7890-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10215322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Yang, Xingan</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Ji, Xiaohua</creatorcontrib><creatorcontrib>Chang, Junqing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><title>Recognition algorithms in E-nose: A Review</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>E-nose</subject><subject>Electronic noses</subject><subject>Feature extraction</subject><subject>gas molecule recognition</subject><subject>machine learning</subject><subject>Principal component analysis</subject><subject>Recognition</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4E3YOkk2m8RbKfWLolAVvIU0na0p7aYm24r_3l3ag6eZw_POyzyEXFIYUAr69vlt_DJgwPiAc2CqVEekR4VQOZWFOu52DnnB5ecpOUtpCUC1FLJHbqbowqL2jQ91ZleLEH3ztU6Zr7NxXoeEd9kwm-LO4885OansKuHFYfbJx_34ffSYT14fnkbDSe44l01bokqhtQJnFWLFqLZalLqEuWOCzWmBVswqcJppFILP5silVFbJQjhaQMn75Hp_dxPD9xZTY5ZhG-u20rSPCdAUqGwpuqdcDClFrMwm-rWNv4aC6ZSYTonplJiDkjZztc94RPzHs9YOY_wPK6RaVQ</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Yang, Xingan</creator><creator>Li, Meng</creator><creator>Ji, Xiaohua</creator><creator>Chang, Junqing</creator><creator>Deng, Zanhong</creator><creator>Meng, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0009-0009-7890-0838</orcidid></search><sort><creationdate>20230915</creationdate><title>Recognition algorithms in E-nose: A Review</title><author>Yang, Xingan ; Li, Meng ; Ji, Xiaohua ; Chang, Junqing ; Deng, Zanhong ; Meng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>E-nose</topic><topic>Electronic noses</topic><topic>Feature extraction</topic><topic>gas molecule recognition</topic><topic>machine learning</topic><topic>Principal component analysis</topic><topic>Recognition</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xingan</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Ji, Xiaohua</creatorcontrib><creatorcontrib>Chang, Junqing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xingan</au><au>Li, Meng</au><au>Ji, Xiaohua</au><au>Chang, Junqing</au><au>Deng, Zanhong</au><au>Meng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition algorithms in E-nose: A Review</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-09-15</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In recent years, the smart electronic nose (E-nose) has witnessed the rapid applications in diverse fields. Apart from sensor arrays, recognition algorithm plays a determinant role on the performance of E-nose. Focusing on the signal processing of E-nose, the response signal characteristic of a sensor is introduced first in this paper. Based on the differences between the processing of features, the algorithms are subsequently divided into traditional and artificial neural networks (ANN)-based, and their respective properties are specifically analyzed through the application in reality. The evaluation metrics for these algorithms are then summarized. Finally, the challenges and prospects of the algorithm are concluded. This paper aims to help researchers in diverse fields employ and explore the appropriate gas recognition algorithms for the emerging applications of E-nose.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3302868</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0009-0009-7890-0838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2023_3302868 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms artificial neural network Artificial neural networks Classification algorithms Data mining E-nose Electronic noses Feature extraction gas molecule recognition machine learning Principal component analysis Recognition Sensor arrays Sensors Signal processing Temperature measurement Temperature sensors |
title | Recognition algorithms in E-nose: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20algorithms%20in%20E-nose:%20A%20Review&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yang,%20Xingan&rft.date=2023-09-15&rft.volume=23&rft.issue=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3302868&rft_dat=%3Cproquest_cross%3E2865091017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-438659980ca8eef219a956960dc252d14ea5bf0c929e553bde3778a8745c14063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865091017&rft_id=info:pmid/&rft_ieee_id=10215322&rfr_iscdi=true |