Loading…
Extracting Visual Micro-Doppler Signatures From Human Lips Motion Using UoG Radar Sensing Data for Hearing Aid Applications
This study proposes a secure and effective lips-reading system that can accurately detect lips movements, even when face masks are worn. The system utilizes radio frequency (RF) sensing and ultra-wideband (UWB) radar technology, which overcomes the challenges posed by traditional vision-based system...
Saved in:
Published in: | IEEE sensors journal 2023-10, Vol.23 (19), p.22111-22118 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposes a secure and effective lips-reading system that can accurately detect lips movements, even when face masks are worn. The system utilizes radio frequency (RF) sensing and ultra-wideband (UWB) radar technology, which overcomes the challenges posed by traditional vision-based systems. By leveraging deep learning models, the system interprets lips and mouth movements and achieves an overall accuracy of 90% for both mask-on and mask-off scenarios. The study utilized a trusted dataset from the University of Glasgow (UoG), consisting of spectrograms of lips motions stating five vowels and a voiceless class from distinct participants. The cutting-edge deep learning algorithm, residual neural network (ResNet50), was used for the evaluation of the dataset and achieved an 87% accurate detection rate with a mask-on scenario, which is a 14% improvement compared to prior published work. The findings of this study contribute to the development of a robust lips-reading framework that can enhance communication accessibility in applications such as hearing aids, voice-controlled systems, biometrics, and more. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2023.3308972 |