Loading…

Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals

Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-04, Vol.24 (7), p.11386-11395
Main Authors: Hao, Yingying, Chen, Xiaoling, Wang, Juan, Zhang, Tengyu, Zhao, Haihong, Yang, Yinan, Xie, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3
container_end_page 11395
container_issue 7
container_start_page 11386
container_title IEEE sensors journal
container_volume 24
creator Hao, Yingying
Chen, Xiaoling
Wang, Juan
Zhang, Tengyu
Zhao, Haihong
Yang, Yinan
Xie, Ping
description Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands ( \theta , \alpha , \beta , and \gamma ) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. \beta frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the \theta - \gamma CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for \alpha - \beta CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in s
doi_str_mv 10.1109/JSEN.2024.3363045
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3363045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443330</ieee_id><sourcerecordid>3031399509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3</originalsourceid><addsrcrecordid>eNpNUNFKwzAUDaLgnH6A4EPA586kSdrEt250U5nzYQq-hSxNpFttZtIi-3tTtgfhwrn3cM7hcgC4xWiCMRIPL-tyNUlRSieEZARRdgZGmDGe4Jzy82EnKKEk_7wEVyFsEcIiZ_kIbKde1S2c963uateqBhZNZ7wajgCdha9909WNOhgPV6b7dX4HCxsVcN15tzOPsIAzFUwyc20kmkj31QFOI1VB18KyXMB1_RWDwzW4sBHMzQnH4GNevs-ekuXb4nlWLBOd0qxLNkRwrpFhHHNhEBFZlhlBqKa5NXhDOWVZxQ2No9OKC6U0s9harRRGea7IGNwfc_fe_fQmdHLrej98IAkimAjBkIgqfFRp70Lwxsq9r7-VP0iM5FCpHCqVQ6XyVGn03B09tTHmn55SQmL0H70pciE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399509</pqid></control><display><type>article</type><title>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</title><source>IEEE Xplore (Online service)</source><creator>Hao, Yingying ; Chen, Xiaoling ; Wang, Juan ; Zhang, Tengyu ; Zhao, Haihong ; Yang, Yinan ; Xie, Ping</creator><creatorcontrib>Hao, Yingying ; Chen, Xiaoling ; Wang, Juan ; Zhang, Tengyu ; Zhao, Haihong ; Yang, Yinan ; Xie, Ping</creatorcontrib><description><![CDATA[Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in stroke and developing effective rehabilitation and therapeutic strategies.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3363045</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Brain ; Brain modeling ; Clustering ; Complexity ; Couplings ; Cross-frequency coupling ; Electroencephalography ; Frequencies ; Frequency modulation ; graph theoretical analysis ; Hemispheres ; Indexes ; multilayer network ; Multilayers ; Multiplexing ; Network topologies ; Nonhomogeneous media ; Phase lag ; Rehabilitation ; Stroke ; Stroke (medical condition)</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.11386-11395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3</cites><orcidid>0000-0003-3677-3753 ; 0000-0001-5878-087X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Hao, Yingying</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Zhang, Tengyu</creatorcontrib><creatorcontrib>Zhao, Haihong</creatorcontrib><creatorcontrib>Yang, Yinan</creatorcontrib><creatorcontrib>Xie, Ping</creatorcontrib><title>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in stroke and developing effective rehabilitation and therapeutic strategies.]]></description><subject>Algebra</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Clustering</subject><subject>Complexity</subject><subject>Couplings</subject><subject>Cross-frequency coupling</subject><subject>Electroencephalography</subject><subject>Frequencies</subject><subject>Frequency modulation</subject><subject>graph theoretical analysis</subject><subject>Hemispheres</subject><subject>Indexes</subject><subject>multilayer network</subject><subject>Multilayers</subject><subject>Multiplexing</subject><subject>Network topologies</subject><subject>Nonhomogeneous media</subject><subject>Phase lag</subject><subject>Rehabilitation</subject><subject>Stroke</subject><subject>Stroke (medical condition)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUNFKwzAUDaLgnH6A4EPA586kSdrEt250U5nzYQq-hSxNpFttZtIi-3tTtgfhwrn3cM7hcgC4xWiCMRIPL-tyNUlRSieEZARRdgZGmDGe4Jzy82EnKKEk_7wEVyFsEcIiZ_kIbKde1S2c963uateqBhZNZ7wajgCdha9909WNOhgPV6b7dX4HCxsVcN15tzOPsIAzFUwyc20kmkj31QFOI1VB18KyXMB1_RWDwzW4sBHMzQnH4GNevs-ekuXb4nlWLBOd0qxLNkRwrpFhHHNhEBFZlhlBqKa5NXhDOWVZxQ2No9OKC6U0s9harRRGea7IGNwfc_fe_fQmdHLrej98IAkimAjBkIgqfFRp70Lwxsq9r7-VP0iM5FCpHCqVQ6XyVGn03B09tTHmn55SQmL0H70pciE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Hao, Yingying</creator><creator>Chen, Xiaoling</creator><creator>Wang, Juan</creator><creator>Zhang, Tengyu</creator><creator>Zhao, Haihong</creator><creator>Yang, Yinan</creator><creator>Xie, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3677-3753</orcidid><orcidid>https://orcid.org/0000-0001-5878-087X</orcidid></search><sort><creationdate>20240401</creationdate><title>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</title><author>Hao, Yingying ; Chen, Xiaoling ; Wang, Juan ; Zhang, Tengyu ; Zhao, Haihong ; Yang, Yinan ; Xie, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Clustering</topic><topic>Complexity</topic><topic>Couplings</topic><topic>Cross-frequency coupling</topic><topic>Electroencephalography</topic><topic>Frequencies</topic><topic>Frequency modulation</topic><topic>graph theoretical analysis</topic><topic>Hemispheres</topic><topic>Indexes</topic><topic>multilayer network</topic><topic>Multilayers</topic><topic>Multiplexing</topic><topic>Network topologies</topic><topic>Nonhomogeneous media</topic><topic>Phase lag</topic><topic>Rehabilitation</topic><topic>Stroke</topic><topic>Stroke (medical condition)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yingying</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Zhang, Tengyu</creatorcontrib><creatorcontrib>Zhao, Haihong</creatorcontrib><creatorcontrib>Yang, Yinan</creatorcontrib><creatorcontrib>Xie, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yingying</au><au>Chen, Xiaoling</au><au>Wang, Juan</au><au>Zhang, Tengyu</au><au>Zhao, Haihong</au><au>Yang, Yinan</au><au>Xie, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>11386</spage><epage>11395</epage><pages>11386-11395</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in stroke and developing effective rehabilitation and therapeutic strategies.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3363045</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3677-3753</orcidid><orcidid>https://orcid.org/0000-0001-5878-087X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-04, Vol.24 (7), p.11386-11395
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3363045
source IEEE Xplore (Online service)
subjects Algebra
Brain
Brain modeling
Clustering
Complexity
Couplings
Cross-frequency coupling
Electroencephalography
Frequencies
Frequency modulation
graph theoretical analysis
Hemispheres
Indexes
multilayer network
Multilayers
Multiplexing
Network topologies
Nonhomogeneous media
Phase lag
Rehabilitation
Stroke
Stroke (medical condition)
title Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Functional%20Alterations%20of%20Multilayer%20Network%20After%20Stroke:%20A%20Case-Control%20Study%20Based%20on%20EEG%20Signals&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hao,%20Yingying&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=11386&rft.epage=11395&rft.pages=11386-11395&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3363045&rft_dat=%3Cproquest_cross%3E3031399509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031399509&rft_id=info:pmid/&rft_ieee_id=10443330&rfr_iscdi=true