Loading…
Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals
Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional co...
Saved in:
Published in: | IEEE sensors journal 2024-04, Vol.24 (7), p.11386-11395 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3 |
container_end_page | 11395 |
container_issue | 7 |
container_start_page | 11386 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Hao, Yingying Chen, Xiaoling Wang, Juan Zhang, Tengyu Zhao, Haihong Yang, Yinan Xie, Ping |
description | Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands ( \theta , \alpha , \beta , and \gamma ) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. \beta frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the \theta - \gamma CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for \alpha - \beta CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in s |
doi_str_mv | 10.1109/JSEN.2024.3363045 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3363045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443330</ieee_id><sourcerecordid>3031399509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3</originalsourceid><addsrcrecordid>eNpNUNFKwzAUDaLgnH6A4EPA586kSdrEt250U5nzYQq-hSxNpFttZtIi-3tTtgfhwrn3cM7hcgC4xWiCMRIPL-tyNUlRSieEZARRdgZGmDGe4Jzy82EnKKEk_7wEVyFsEcIiZ_kIbKde1S2c963uateqBhZNZ7wajgCdha9909WNOhgPV6b7dX4HCxsVcN15tzOPsIAzFUwyc20kmkj31QFOI1VB18KyXMB1_RWDwzW4sBHMzQnH4GNevs-ekuXb4nlWLBOd0qxLNkRwrpFhHHNhEBFZlhlBqKa5NXhDOWVZxQ2No9OKC6U0s9harRRGea7IGNwfc_fe_fQmdHLrej98IAkimAjBkIgqfFRp70Lwxsq9r7-VP0iM5FCpHCqVQ6XyVGn03B09tTHmn55SQmL0H70pciE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399509</pqid></control><display><type>article</type><title>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</title><source>IEEE Xplore (Online service)</source><creator>Hao, Yingying ; Chen, Xiaoling ; Wang, Juan ; Zhang, Tengyu ; Zhao, Haihong ; Yang, Yinan ; Xie, Ping</creator><creatorcontrib>Hao, Yingying ; Chen, Xiaoling ; Wang, Juan ; Zhang, Tengyu ; Zhao, Haihong ; Yang, Yinan ; Xie, Ping</creatorcontrib><description><![CDATA[Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in stroke and developing effective rehabilitation and therapeutic strategies.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3363045</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Brain ; Brain modeling ; Clustering ; Complexity ; Couplings ; Cross-frequency coupling ; Electroencephalography ; Frequencies ; Frequency modulation ; graph theoretical analysis ; Hemispheres ; Indexes ; multilayer network ; Multilayers ; Multiplexing ; Network topologies ; Nonhomogeneous media ; Phase lag ; Rehabilitation ; Stroke ; Stroke (medical condition)</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.11386-11395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3</cites><orcidid>0000-0003-3677-3753 ; 0000-0001-5878-087X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Hao, Yingying</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Zhang, Tengyu</creatorcontrib><creatorcontrib>Zhao, Haihong</creatorcontrib><creatorcontrib>Yang, Yinan</creatorcontrib><creatorcontrib>Xie, Ping</creatorcontrib><title>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in stroke and developing effective rehabilitation and therapeutic strategies.]]></description><subject>Algebra</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Clustering</subject><subject>Complexity</subject><subject>Couplings</subject><subject>Cross-frequency coupling</subject><subject>Electroencephalography</subject><subject>Frequencies</subject><subject>Frequency modulation</subject><subject>graph theoretical analysis</subject><subject>Hemispheres</subject><subject>Indexes</subject><subject>multilayer network</subject><subject>Multilayers</subject><subject>Multiplexing</subject><subject>Network topologies</subject><subject>Nonhomogeneous media</subject><subject>Phase lag</subject><subject>Rehabilitation</subject><subject>Stroke</subject><subject>Stroke (medical condition)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUNFKwzAUDaLgnH6A4EPA586kSdrEt250U5nzYQq-hSxNpFttZtIi-3tTtgfhwrn3cM7hcgC4xWiCMRIPL-tyNUlRSieEZARRdgZGmDGe4Jzy82EnKKEk_7wEVyFsEcIiZ_kIbKde1S2c963uateqBhZNZ7wajgCdha9909WNOhgPV6b7dX4HCxsVcN15tzOPsIAzFUwyc20kmkj31QFOI1VB18KyXMB1_RWDwzW4sBHMzQnH4GNevs-ekuXb4nlWLBOd0qxLNkRwrpFhHHNhEBFZlhlBqKa5NXhDOWVZxQ2No9OKC6U0s9harRRGea7IGNwfc_fe_fQmdHLrej98IAkimAjBkIgqfFRp70Lwxsq9r7-VP0iM5FCpHCqVQ6XyVGn03B09tTHmn55SQmL0H70pciE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Hao, Yingying</creator><creator>Chen, Xiaoling</creator><creator>Wang, Juan</creator><creator>Zhang, Tengyu</creator><creator>Zhao, Haihong</creator><creator>Yang, Yinan</creator><creator>Xie, Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3677-3753</orcidid><orcidid>https://orcid.org/0000-0001-5878-087X</orcidid></search><sort><creationdate>20240401</creationdate><title>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</title><author>Hao, Yingying ; Chen, Xiaoling ; Wang, Juan ; Zhang, Tengyu ; Zhao, Haihong ; Yang, Yinan ; Xie, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Clustering</topic><topic>Complexity</topic><topic>Couplings</topic><topic>Cross-frequency coupling</topic><topic>Electroencephalography</topic><topic>Frequencies</topic><topic>Frequency modulation</topic><topic>graph theoretical analysis</topic><topic>Hemispheres</topic><topic>Indexes</topic><topic>multilayer network</topic><topic>Multilayers</topic><topic>Multiplexing</topic><topic>Network topologies</topic><topic>Nonhomogeneous media</topic><topic>Phase lag</topic><topic>Rehabilitation</topic><topic>Stroke</topic><topic>Stroke (medical condition)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yingying</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Zhang, Tengyu</creatorcontrib><creatorcontrib>Zhao, Haihong</creatorcontrib><creatorcontrib>Yang, Yinan</creatorcontrib><creatorcontrib>Xie, Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yingying</au><au>Chen, Xiaoling</au><au>Wang, Juan</au><au>Zhang, Tengyu</au><au>Zhao, Haihong</au><au>Yang, Yinan</au><au>Xie, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>11386</spage><epage>11395</epage><pages>11386-11395</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Effective description of the brain function after stroke is the key to accurate rehabilitation assessment, and it is of great significance to explore the nonlinear complexity characteristics of the brain from the perspective of complex networks. In this study, we investigated the brain functional connectivity alterations after stroke by constructing a multilayer network model. First, we obtained multichannel EEG signals in different frequency bands (<inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula>) during the multijoint compound movement. Furthermore, we introduced the weighted phase lag index (wPLI) and Kullback-Leibler (KL)-modulation index (MI) to construct the within-frequency subnetworks (WFNs) and cross-frequency subnetworks (CFNs), respectively. Then, the multilayer network was constructed by the aforementioned subnetworks. Calculating the multiplex participation coefficient (MPC) and multiplex clustering coefficient (MCC) to explore differences in connection strength within subnetworks. The algebraic connectivity was used to compare the differences in multilayer network topology from a global perspective. <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> frequency band WFN showed significantly stronger connectivity in a healthy group compared with stroke patients. Conversely, the <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\gamma </tex-math></inline-formula> CFN in patients exhibited significantly higher connectivity strength compared with controls, while the opposite was true for <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula> CFN. There were significant differences in network nodes between the left and right brain regions in controls, whereas the distribution of MPC in both hemispheres was evenly distributed in the patients. Global metrics indicated that the algebraic connectivity of the patients' brain network was significantly lower than that of the controls. These findings have important implications for understanding the brain functional connectivity in stroke and developing effective rehabilitation and therapeutic strategies.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3363045</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3677-3753</orcidid><orcidid>https://orcid.org/0000-0001-5878-087X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-04, Vol.24 (7), p.11386-11395 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2024_3363045 |
source | IEEE Xplore (Online service) |
subjects | Algebra Brain Brain modeling Clustering Complexity Couplings Cross-frequency coupling Electroencephalography Frequencies Frequency modulation graph theoretical analysis Hemispheres Indexes multilayer network Multilayers Multiplexing Network topologies Nonhomogeneous media Phase lag Rehabilitation Stroke Stroke (medical condition) |
title | Brain Functional Alterations of Multilayer Network After Stroke: A Case-Control Study Based on EEG Signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Functional%20Alterations%20of%20Multilayer%20Network%20After%20Stroke:%20A%20Case-Control%20Study%20Based%20on%20EEG%20Signals&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hao,%20Yingying&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=11386&rft.epage=11395&rft.pages=11386-11395&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3363045&rft_dat=%3Cproquest_cross%3E3031399509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-b3988c0e58189e039666e934c47fe1b48456d8e48e4c2d89aac5f1ffcaa1077a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031399509&rft_id=info:pmid/&rft_ieee_id=10443330&rfr_iscdi=true |