Loading…
Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter
In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensa...
Saved in:
Published in: | IEEE sensors journal 2024-10, Vol.24 (19), p.30192-30204 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943 |
container_end_page | 30204 |
container_issue | 19 |
container_start_page | 30192 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Li, Xinyu Zhang, Zhili Zhou, Zhaofa Wu, Pengfei Chang, Zhenjun Hao, Shiwen |
description | In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, 1~^{\circ } C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and 12.02~\mu Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability. |
doi_str_mv | 10.1109/JSEN.2024.3435708 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3435708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643019</ieee_id><sourcerecordid>3112229007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1X7vZHKXUqtQP2griZclmZ7tb2k1N0oL_3iz14Gnm8LwzLw9C15SMKCXq7nkxeR0xwsSIC55Kkp-gAU3TPKFS5Kf9zkkiuPw8RxferwmhSqZygMIcPGhnGmw7HBrAS9juwOmwd4AndQ0mYN1V-N36sHPWgPdtt8JjG6nO69DG2AuExlYe2xp_gbPJDLpVaPBi53p0DpuIHQBPnT60WwjgLtFZrTcerv7mEH08TJbjx2T2Nn0a388SQ2UWEkOMVkxIMKLmXJaqYkxwXVFIy7wiNOdgylqqTGVppcAoU5cGKNGGSKKV4EN0e7wbm3_vwYdibfeuiy8LTiljTBEiI0WPlHHWewd1EYtvtfspKCl6uUUvt-jlFn9yY-bmmGkB4B-fCR7N8l8yHHgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112229007</pqid></control><display><type>article</type><title>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xinyu ; Zhang, Zhili ; Zhou, Zhaofa ; Wu, Pengfei ; Chang, Zhenjun ; Hao, Shiwen</creator><creatorcontrib>Li, Xinyu ; Zhang, Zhili ; Zhou, Zhaofa ; Wu, Pengfei ; Chang, Zhenjun ; Hao, Shiwen</creatorcontrib><description><![CDATA[In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, <inline-formula> <tex-math notation="LaTeX">1~^{\circ } </tex-math></inline-formula>C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and <inline-formula> <tex-math notation="LaTeX">12.02~\mu </tex-math></inline-formula>Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3435708</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Ambient temperature ; Artificial neural networks ; Back propagation networks ; BP neural network (BPNN) ; Correlation analysis ; Gravimeters ; Gravity ; Gravity measurement ; improved sparrow search algorithm (ISSA) ; Least squares method ; Optimization ; Position measurement ; Search algorithms ; Seasonal variations ; Sensors ; Springs ; Temperature compensation ; Temperature control ; Temperature effects ; Temperature measurement ; Temperature sensors ; two-layer temperature compensation algorithm (TLTCA) ; zero-length spring relative gravimeter</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.30192-30204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943</cites><orcidid>0009-0005-2429-081X ; 0009-0008-1886-6167 ; 0009-0009-9726-8698 ; 0000-0002-9208-0815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><creatorcontrib>Zhou, Zhaofa</creatorcontrib><creatorcontrib>Wu, Pengfei</creatorcontrib><creatorcontrib>Chang, Zhenjun</creatorcontrib><creatorcontrib>Hao, Shiwen</creatorcontrib><title>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, <inline-formula> <tex-math notation="LaTeX">1~^{\circ } </tex-math></inline-formula>C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and <inline-formula> <tex-math notation="LaTeX">12.02~\mu </tex-math></inline-formula>Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Ambient temperature</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>BP neural network (BPNN)</subject><subject>Correlation analysis</subject><subject>Gravimeters</subject><subject>Gravity</subject><subject>Gravity measurement</subject><subject>improved sparrow search algorithm (ISSA)</subject><subject>Least squares method</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Search algorithms</subject><subject>Seasonal variations</subject><subject>Sensors</subject><subject>Springs</subject><subject>Temperature compensation</subject><subject>Temperature control</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>two-layer temperature compensation algorithm (TLTCA)</subject><subject>zero-length spring relative gravimeter</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1X7vZHKXUqtQP2griZclmZ7tb2k1N0oL_3iz14Gnm8LwzLw9C15SMKCXq7nkxeR0xwsSIC55Kkp-gAU3TPKFS5Kf9zkkiuPw8RxferwmhSqZygMIcPGhnGmw7HBrAS9juwOmwd4AndQ0mYN1V-N36sHPWgPdtt8JjG6nO69DG2AuExlYe2xp_gbPJDLpVaPBi53p0DpuIHQBPnT60WwjgLtFZrTcerv7mEH08TJbjx2T2Nn0a388SQ2UWEkOMVkxIMKLmXJaqYkxwXVFIy7wiNOdgylqqTGVppcAoU5cGKNGGSKKV4EN0e7wbm3_vwYdibfeuiy8LTiljTBEiI0WPlHHWewd1EYtvtfspKCl6uUUvt-jlFn9yY-bmmGkB4B-fCR7N8l8yHHgm</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Xinyu</creator><creator>Zhang, Zhili</creator><creator>Zhou, Zhaofa</creator><creator>Wu, Pengfei</creator><creator>Chang, Zhenjun</creator><creator>Hao, Shiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-2429-081X</orcidid><orcidid>https://orcid.org/0009-0008-1886-6167</orcidid><orcidid>https://orcid.org/0009-0009-9726-8698</orcidid><orcidid>https://orcid.org/0000-0002-9208-0815</orcidid></search><sort><creationdate>20241001</creationdate><title>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</title><author>Li, Xinyu ; Zhang, Zhili ; Zhou, Zhaofa ; Wu, Pengfei ; Chang, Zhenjun ; Hao, Shiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Ambient temperature</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>BP neural network (BPNN)</topic><topic>Correlation analysis</topic><topic>Gravimeters</topic><topic>Gravity</topic><topic>Gravity measurement</topic><topic>improved sparrow search algorithm (ISSA)</topic><topic>Least squares method</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Search algorithms</topic><topic>Seasonal variations</topic><topic>Sensors</topic><topic>Springs</topic><topic>Temperature compensation</topic><topic>Temperature control</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>two-layer temperature compensation algorithm (TLTCA)</topic><topic>zero-length spring relative gravimeter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><creatorcontrib>Zhou, Zhaofa</creatorcontrib><creatorcontrib>Wu, Pengfei</creatorcontrib><creatorcontrib>Chang, Zhenjun</creatorcontrib><creatorcontrib>Hao, Shiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinyu</au><au>Zhang, Zhili</au><au>Zhou, Zhaofa</au><au>Wu, Pengfei</au><au>Chang, Zhenjun</au><au>Hao, Shiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>30192</spage><epage>30204</epage><pages>30192-30204</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, <inline-formula> <tex-math notation="LaTeX">1~^{\circ } </tex-math></inline-formula>C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and <inline-formula> <tex-math notation="LaTeX">12.02~\mu </tex-math></inline-formula>Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3435708</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0005-2429-081X</orcidid><orcidid>https://orcid.org/0009-0008-1886-6167</orcidid><orcidid>https://orcid.org/0009-0009-9726-8698</orcidid><orcidid>https://orcid.org/0000-0002-9208-0815</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, Vol.24 (19), p.30192-30204 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2024_3435708 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Algorithms Ambient temperature Artificial neural networks Back propagation networks BP neural network (BPNN) Correlation analysis Gravimeters Gravity Gravity measurement improved sparrow search algorithm (ISSA) Least squares method Optimization Position measurement Search algorithms Seasonal variations Sensors Springs Temperature compensation Temperature control Temperature effects Temperature measurement Temperature sensors two-layer temperature compensation algorithm (TLTCA) zero-length spring relative gravimeter |
title | Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Temperature%20Effect%20and%20Postprocessing%20Compensation%20Methods%20of%20Zero-Length%20Spring%20Relative%20Gravimeter&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Xinyu&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=30192&rft.epage=30204&rft.pages=30192-30204&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3435708&rft_dat=%3Cproquest_cross%3E3112229007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112229007&rft_id=info:pmid/&rft_ieee_id=10643019&rfr_iscdi=true |