Loading…

Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter

In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-10, Vol.24 (19), p.30192-30204
Main Authors: Li, Xinyu, Zhang, Zhili, Zhou, Zhaofa, Wu, Pengfei, Chang, Zhenjun, Hao, Shiwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943
container_end_page 30204
container_issue 19
container_start_page 30192
container_title IEEE sensors journal
container_volume 24
creator Li, Xinyu
Zhang, Zhili
Zhou, Zhaofa
Wu, Pengfei
Chang, Zhenjun
Hao, Shiwen
description In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, 1~^{\circ } C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and 12.02~\mu Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.
doi_str_mv 10.1109/JSEN.2024.3435708
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3435708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643019</ieee_id><sourcerecordid>3112229007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1X7vZHKXUqtQP2griZclmZ7tb2k1N0oL_3iz14Gnm8LwzLw9C15SMKCXq7nkxeR0xwsSIC55Kkp-gAU3TPKFS5Kf9zkkiuPw8RxferwmhSqZygMIcPGhnGmw7HBrAS9juwOmwd4AndQ0mYN1V-N36sHPWgPdtt8JjG6nO69DG2AuExlYe2xp_gbPJDLpVaPBi53p0DpuIHQBPnT60WwjgLtFZrTcerv7mEH08TJbjx2T2Nn0a388SQ2UWEkOMVkxIMKLmXJaqYkxwXVFIy7wiNOdgylqqTGVppcAoU5cGKNGGSKKV4EN0e7wbm3_vwYdibfeuiy8LTiljTBEiI0WPlHHWewd1EYtvtfspKCl6uUUvt-jlFn9yY-bmmGkB4B-fCR7N8l8yHHgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112229007</pqid></control><display><type>article</type><title>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xinyu ; Zhang, Zhili ; Zhou, Zhaofa ; Wu, Pengfei ; Chang, Zhenjun ; Hao, Shiwen</creator><creatorcontrib>Li, Xinyu ; Zhang, Zhili ; Zhou, Zhaofa ; Wu, Pengfei ; Chang, Zhenjun ; Hao, Shiwen</creatorcontrib><description><![CDATA[In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, <inline-formula> <tex-math notation="LaTeX">1~^{\circ } </tex-math></inline-formula>C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and <inline-formula> <tex-math notation="LaTeX">12.02~\mu </tex-math></inline-formula>Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3435708</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Ambient temperature ; Artificial neural networks ; Back propagation networks ; BP neural network (BPNN) ; Correlation analysis ; Gravimeters ; Gravity ; Gravity measurement ; improved sparrow search algorithm (ISSA) ; Least squares method ; Optimization ; Position measurement ; Search algorithms ; Seasonal variations ; Sensors ; Springs ; Temperature compensation ; Temperature control ; Temperature effects ; Temperature measurement ; Temperature sensors ; two-layer temperature compensation algorithm (TLTCA) ; zero-length spring relative gravimeter</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.30192-30204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943</cites><orcidid>0009-0005-2429-081X ; 0009-0008-1886-6167 ; 0009-0009-9726-8698 ; 0000-0002-9208-0815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><creatorcontrib>Zhou, Zhaofa</creatorcontrib><creatorcontrib>Wu, Pengfei</creatorcontrib><creatorcontrib>Chang, Zhenjun</creatorcontrib><creatorcontrib>Hao, Shiwen</creatorcontrib><title>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, <inline-formula> <tex-math notation="LaTeX">1~^{\circ } </tex-math></inline-formula>C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and <inline-formula> <tex-math notation="LaTeX">12.02~\mu </tex-math></inline-formula>Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Ambient temperature</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>BP neural network (BPNN)</subject><subject>Correlation analysis</subject><subject>Gravimeters</subject><subject>Gravity</subject><subject>Gravity measurement</subject><subject>improved sparrow search algorithm (ISSA)</subject><subject>Least squares method</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Search algorithms</subject><subject>Seasonal variations</subject><subject>Sensors</subject><subject>Springs</subject><subject>Temperature compensation</subject><subject>Temperature control</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>two-layer temperature compensation algorithm (TLTCA)</subject><subject>zero-length spring relative gravimeter</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1X7vZHKXUqtQP2griZclmZ7tb2k1N0oL_3iz14Gnm8LwzLw9C15SMKCXq7nkxeR0xwsSIC55Kkp-gAU3TPKFS5Kf9zkkiuPw8RxferwmhSqZygMIcPGhnGmw7HBrAS9juwOmwd4AndQ0mYN1V-N36sHPWgPdtt8JjG6nO69DG2AuExlYe2xp_gbPJDLpVaPBi53p0DpuIHQBPnT60WwjgLtFZrTcerv7mEH08TJbjx2T2Nn0a388SQ2UWEkOMVkxIMKLmXJaqYkxwXVFIy7wiNOdgylqqTGVppcAoU5cGKNGGSKKV4EN0e7wbm3_vwYdibfeuiy8LTiljTBEiI0WPlHHWewd1EYtvtfspKCl6uUUvt-jlFn9yY-bmmGkB4B-fCR7N8l8yHHgm</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Xinyu</creator><creator>Zhang, Zhili</creator><creator>Zhou, Zhaofa</creator><creator>Wu, Pengfei</creator><creator>Chang, Zhenjun</creator><creator>Hao, Shiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-2429-081X</orcidid><orcidid>https://orcid.org/0009-0008-1886-6167</orcidid><orcidid>https://orcid.org/0009-0009-9726-8698</orcidid><orcidid>https://orcid.org/0000-0002-9208-0815</orcidid></search><sort><creationdate>20241001</creationdate><title>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</title><author>Li, Xinyu ; Zhang, Zhili ; Zhou, Zhaofa ; Wu, Pengfei ; Chang, Zhenjun ; Hao, Shiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Ambient temperature</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>BP neural network (BPNN)</topic><topic>Correlation analysis</topic><topic>Gravimeters</topic><topic>Gravity</topic><topic>Gravity measurement</topic><topic>improved sparrow search algorithm (ISSA)</topic><topic>Least squares method</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Search algorithms</topic><topic>Seasonal variations</topic><topic>Sensors</topic><topic>Springs</topic><topic>Temperature compensation</topic><topic>Temperature control</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>two-layer temperature compensation algorithm (TLTCA)</topic><topic>zero-length spring relative gravimeter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><creatorcontrib>Zhou, Zhaofa</creatorcontrib><creatorcontrib>Wu, Pengfei</creatorcontrib><creatorcontrib>Chang, Zhenjun</creatorcontrib><creatorcontrib>Hao, Shiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinyu</au><au>Zhang, Zhili</au><au>Zhou, Zhaofa</au><au>Wu, Pengfei</au><au>Chang, Zhenjun</au><au>Hao, Shiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>30192</spage><epage>30204</epage><pages>30192-30204</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[In order to effectively solve the problems of ambient temperature variation significantly that affects the measurement accuracy of the gravimeter and the customary temperature control scheme tht severely restricts the rapid start-up capability of gravity measurement, a two-layer temperature compensation algorithm (TLTCA) for a zero-length spring relative gravimeter is proposed. The upper layer temperature compensation model is constructed based on influence mechanisms and correlation analysis, and the population initialization and position update formulas of the sparrow search algorithm (SSA) used to optimize model coefficients are improved to form an improved SSA algorithm (ISSA), which significantly improves the search capability of the global optimal solution. A large-scale measured dataset was created to train the lower layer temperature compensation model using a BP neural network (BPNN). The TLTCA integrates the advantages of the upper and lower models, improving the accuracy and stability of the gravimeter output. The temperature compensation effects of SSA, ISSA, BPNN, and TLTCA are examined under four experimental environments, namely, constant external temperature, natural temperature variation, <inline-formula> <tex-math notation="LaTeX">1~^{\circ } </tex-math></inline-formula>C/min temperature rise and fall, and rapid temperature variation. The results are compared to the least-squares method (LSM), commonly used in engineering practice. The experimental results demonstrate that the TLTCA has the best effect, with the standard deviation (STD) after compensation up to 0.89, 2.76, 8.66, and <inline-formula> <tex-math notation="LaTeX">12.02~\mu </tex-math></inline-formula>Gal, which is comparable to that of the high-precision temperature control scheme and has important reference significance for enhancing gravimeter rapid start-up and environmental adaptability.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3435708</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0005-2429-081X</orcidid><orcidid>https://orcid.org/0009-0008-1886-6167</orcidid><orcidid>https://orcid.org/0009-0009-9726-8698</orcidid><orcidid>https://orcid.org/0000-0002-9208-0815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (19), p.30192-30204
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3435708
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Algorithms
Ambient temperature
Artificial neural networks
Back propagation networks
BP neural network (BPNN)
Correlation analysis
Gravimeters
Gravity
Gravity measurement
improved sparrow search algorithm (ISSA)
Least squares method
Optimization
Position measurement
Search algorithms
Seasonal variations
Sensors
Springs
Temperature compensation
Temperature control
Temperature effects
Temperature measurement
Temperature sensors
two-layer temperature compensation algorithm (TLTCA)
zero-length spring relative gravimeter
title Research on the Temperature Effect and Postprocessing Compensation Methods of Zero-Length Spring Relative Gravimeter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Temperature%20Effect%20and%20Postprocessing%20Compensation%20Methods%20of%20Zero-Length%20Spring%20Relative%20Gravimeter&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Xinyu&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=30192&rft.epage=30204&rft.pages=30192-30204&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3435708&rft_dat=%3Cproquest_cross%3E3112229007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-c0ca9247ec4f337b9d2243ad1e5b8d0183ecbf796965d9ec9cfbce10ac070a943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112229007&rft_id=info:pmid/&rft_ieee_id=10643019&rfr_iscdi=true