Loading…

Silicon complexity for maximum likelihood MIMO detection using spherical decoding

Multiple-input multiple-output (MIMO) wireless systems increase spectral efficiency by transmitting independent signals on multiple transmit antennas in the same channel bandwidth. The key to using MIMO is in building a receiver that can decorrelate the spatial signatures on the receiver antenna arr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2004-09, Vol.39 (9), p.1544-1552
Main Authors: Garrett, D., Davis, L., ten Brink, S., Hochwald, B., Knagge, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiple-input multiple-output (MIMO) wireless systems increase spectral efficiency by transmitting independent signals on multiple transmit antennas in the same channel bandwidth. The key to using MIMO is in building a receiver that can decorrelate the spatial signatures on the receiver antenna array. Original MIMO detection schemes such as the vertical Bell Labs layered space-time (VBLAST) detector use a nulling and cancellation process for detection that is sub-optimal as compared to constrained maximum likelihood (ML) techniques. This paper presents a silicon complexity analysis of ML search techniques for MIMO as applied to the HSDPA extension of UMTS. For MIMO constellations of 4/spl times/4 QPSK or lower, it is possible to perform an exhaustive ML search in today's silicon technologies. When the search complexity exceeds technology limits for high complexity MIMO constellations, it is possible to apply spherical decoding techniques to achieve near-ML performance. The paper presents an architecture for a 4/spl times/4 16QAM MIMO spherical decoder with soft outputs that achieves 38.8 Mb/s over a 5-MHz channel using only approximately 10 mm/sup 2/ in a 0.18-/spl mu/m CMOS process.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2004.831454