Loading…
A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy
Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and writ...
Saved in:
Published in: | IEEE journal of solid-state circuits 2008-01, Vol.43 (1), p.141-149 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43 |
container_end_page | 149 |
container_issue | 1 |
container_start_page | 141 |
container_title | IEEE journal of solid-state circuits |
container_volume | 43 |
creator | Verma, N. Chandrakasan, A.P. |
description | Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power. |
doi_str_mv | 10.1109/JSSC.2007.908005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2007_908005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4443213</ieee_id><sourcerecordid>2544925331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhsxkHXjPeClEdTTrFX9NT3HZYlGiQiZCN6anp4aM3F2ZtO9c9h_by8bcvCgh6Io6qm3qHoZu0RYIUL18Wtdb1YCoFxVYAH0C7ZArW2Bpfz5ki0A0BZV7p-zVyk95FIpiwt2veZCG_674UbzccvtHa_nZn8fKd1PQ8vr2_U3frXdDdOhH3_xmsZExTrXfddT5LfUzmPrx3C4YGedHxK9fspL9uPT1d3murj5_vnLZn1ThLxvXyiompZs2SlLVLVS-CC0bWQwxmpD3rTGGuyEaKVH20Cw2AgjK9E1hjAouWQfTrq7OD3OlPZu26dAw-BHmubkKpBGZA39X9KWGrRBsJl8_09SKoVS51iyt3-BD9Mcx3yvq1AIZZQUGYITFOKUUqTO7WK_9fHgENzRK3f0yh29ciev8si7J12fgh-6mD_ap-c5AUKIEo_HvzlxPRE9t5XKa1HKP3U6mHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912246432</pqid></control><display><type>article</type><title>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Verma, N. ; Chandrakasan, A.P.</creator><creatorcontrib>Verma, N. ; Chandrakasan, A.P.</creatorcontrib><description>Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2007.908005</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cache memories ; CMOS memory circuits ; Density ; Design. Technologies. Operation analysis. Testing ; Devices ; Electric potential ; Electronics ; Exact sciences and technology ; High density ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Leakage ; Leakage current ; leakage currents ; Logic arrays ; Logic devices ; Low voltage ; low-power electronics ; MOSFET circuits ; Random access memory ; Redundancy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SRAM chips ; Stability ; Static random access memory ; Threshold voltage ; Voltage ; Voltage control</subject><ispartof>IEEE journal of solid-state circuits, 2008-01, Vol.43 (1), p.141-149</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</citedby><cites>FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4443213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,4036,4037,23911,23912,25120,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20222714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, N.</creatorcontrib><creatorcontrib>Chandrakasan, A.P.</creatorcontrib><title>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.</description><subject>Applied sciences</subject><subject>Cache memories</subject><subject>CMOS memory circuits</subject><subject>Density</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High density</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>leakage currents</subject><subject>Logic arrays</subject><subject>Logic devices</subject><subject>Low voltage</subject><subject>low-power electronics</subject><subject>MOSFET circuits</subject><subject>Random access memory</subject><subject>Redundancy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SRAM chips</subject><subject>Stability</subject><subject>Static random access memory</subject><subject>Threshold voltage</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFEEQhhsxkHXjPeClEdTTrFX9NT3HZYlGiQiZCN6anp4aM3F2ZtO9c9h_by8bcvCgh6Io6qm3qHoZu0RYIUL18Wtdb1YCoFxVYAH0C7ZArW2Bpfz5ki0A0BZV7p-zVyk95FIpiwt2veZCG_674UbzccvtHa_nZn8fKd1PQ8vr2_U3frXdDdOhH3_xmsZExTrXfddT5LfUzmPrx3C4YGedHxK9fspL9uPT1d3murj5_vnLZn1ThLxvXyiompZs2SlLVLVS-CC0bWQwxmpD3rTGGuyEaKVH20Cw2AgjK9E1hjAouWQfTrq7OD3OlPZu26dAw-BHmubkKpBGZA39X9KWGrRBsJl8_09SKoVS51iyt3-BD9Mcx3yvq1AIZZQUGYITFOKUUqTO7WK_9fHgENzRK3f0yh29ciev8si7J12fgh-6mD_ap-c5AUKIEo_HvzlxPRE9t5XKa1HKP3U6mHE</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Verma, N.</creator><creator>Chandrakasan, A.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200801</creationdate><title>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</title><author>Verma, N. ; Chandrakasan, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cache memories</topic><topic>CMOS memory circuits</topic><topic>Density</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High density</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>leakage currents</topic><topic>Logic arrays</topic><topic>Logic devices</topic><topic>Low voltage</topic><topic>low-power electronics</topic><topic>MOSFET circuits</topic><topic>Random access memory</topic><topic>Redundancy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SRAM chips</topic><topic>Stability</topic><topic>Static random access memory</topic><topic>Threshold voltage</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, N.</creatorcontrib><creatorcontrib>Chandrakasan, A.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, N.</au><au>Chandrakasan, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2008-01</date><risdate>2008</risdate><volume>43</volume><issue>1</issue><spage>141</spage><epage>149</epage><pages>141-149</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2007.908005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2008-01, Vol.43 (1), p.141-149 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2007_908005 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Cache memories CMOS memory circuits Density Design. Technologies. Operation analysis. Testing Devices Electric potential Electronics Exact sciences and technology High density Integrated circuits Integrated circuits by function (including memories and processors) Leakage Leakage current leakage currents Logic arrays Logic devices Low voltage low-power electronics MOSFET circuits Random access memory Redundancy Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SRAM chips Stability Static random access memory Threshold voltage Voltage Voltage control |
title | A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20256%20kb%2065%20nm%208T%20Subthreshold%20SRAM%20Employing%20Sense-Amplifier%20Redundancy&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Verma,%20N.&rft.date=2008-01&rft.volume=43&rft.issue=1&rft.spage=141&rft.epage=149&rft.pages=141-149&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2007.908005&rft_dat=%3Cproquest_cross%3E2544925331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912246432&rft_id=info:pmid/&rft_ieee_id=4443213&rfr_iscdi=true |