Loading…

A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy

Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and writ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2008-01, Vol.43 (1), p.141-149
Main Authors: Verma, N., Chandrakasan, A.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43
cites cdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43
container_end_page 149
container_issue 1
container_start_page 141
container_title IEEE journal of solid-state circuits
container_volume 43
creator Verma, N.
Chandrakasan, A.P.
description Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.
doi_str_mv 10.1109/JSSC.2007.908005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2007_908005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4443213</ieee_id><sourcerecordid>2544925331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhsxkHXjPeClEdTTrFX9NT3HZYlGiQiZCN6anp4aM3F2ZtO9c9h_by8bcvCgh6Io6qm3qHoZu0RYIUL18Wtdb1YCoFxVYAH0C7ZArW2Bpfz5ki0A0BZV7p-zVyk95FIpiwt2veZCG_674UbzccvtHa_nZn8fKd1PQ8vr2_U3frXdDdOhH3_xmsZExTrXfddT5LfUzmPrx3C4YGedHxK9fspL9uPT1d3murj5_vnLZn1ThLxvXyiompZs2SlLVLVS-CC0bWQwxmpD3rTGGuyEaKVH20Cw2AgjK9E1hjAouWQfTrq7OD3OlPZu26dAw-BHmubkKpBGZA39X9KWGrRBsJl8_09SKoVS51iyt3-BD9Mcx3yvq1AIZZQUGYITFOKUUqTO7WK_9fHgENzRK3f0yh29ciev8si7J12fgh-6mD_ap-c5AUKIEo_HvzlxPRE9t5XKa1HKP3U6mHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912246432</pqid></control><display><type>article</type><title>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Verma, N. ; Chandrakasan, A.P.</creator><creatorcontrib>Verma, N. ; Chandrakasan, A.P.</creatorcontrib><description>Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2007.908005</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cache memories ; CMOS memory circuits ; Density ; Design. Technologies. Operation analysis. Testing ; Devices ; Electric potential ; Electronics ; Exact sciences and technology ; High density ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Leakage ; Leakage current ; leakage currents ; Logic arrays ; Logic devices ; Low voltage ; low-power electronics ; MOSFET circuits ; Random access memory ; Redundancy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SRAM chips ; Stability ; Static random access memory ; Threshold voltage ; Voltage ; Voltage control</subject><ispartof>IEEE journal of solid-state circuits, 2008-01, Vol.43 (1), p.141-149</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</citedby><cites>FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4443213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,4036,4037,23911,23912,25120,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20222714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, N.</creatorcontrib><creatorcontrib>Chandrakasan, A.P.</creatorcontrib><title>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.</description><subject>Applied sciences</subject><subject>Cache memories</subject><subject>CMOS memory circuits</subject><subject>Density</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High density</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>leakage currents</subject><subject>Logic arrays</subject><subject>Logic devices</subject><subject>Low voltage</subject><subject>low-power electronics</subject><subject>MOSFET circuits</subject><subject>Random access memory</subject><subject>Redundancy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SRAM chips</subject><subject>Stability</subject><subject>Static random access memory</subject><subject>Threshold voltage</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFEEQhhsxkHXjPeClEdTTrFX9NT3HZYlGiQiZCN6anp4aM3F2ZtO9c9h_by8bcvCgh6Io6qm3qHoZu0RYIUL18Wtdb1YCoFxVYAH0C7ZArW2Bpfz5ki0A0BZV7p-zVyk95FIpiwt2veZCG_674UbzccvtHa_nZn8fKd1PQ8vr2_U3frXdDdOhH3_xmsZExTrXfddT5LfUzmPrx3C4YGedHxK9fspL9uPT1d3murj5_vnLZn1ThLxvXyiompZs2SlLVLVS-CC0bWQwxmpD3rTGGuyEaKVH20Cw2AgjK9E1hjAouWQfTrq7OD3OlPZu26dAw-BHmubkKpBGZA39X9KWGrRBsJl8_09SKoVS51iyt3-BD9Mcx3yvq1AIZZQUGYITFOKUUqTO7WK_9fHgENzRK3f0yh29ciev8si7J12fgh-6mD_ap-c5AUKIEo_HvzlxPRE9t5XKa1HKP3U6mHE</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Verma, N.</creator><creator>Chandrakasan, A.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200801</creationdate><title>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</title><author>Verma, N. ; Chandrakasan, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cache memories</topic><topic>CMOS memory circuits</topic><topic>Density</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High density</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>leakage currents</topic><topic>Logic arrays</topic><topic>Logic devices</topic><topic>Low voltage</topic><topic>low-power electronics</topic><topic>MOSFET circuits</topic><topic>Random access memory</topic><topic>Redundancy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SRAM chips</topic><topic>Stability</topic><topic>Static random access memory</topic><topic>Threshold voltage</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, N.</creatorcontrib><creatorcontrib>Chandrakasan, A.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, N.</au><au>Chandrakasan, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2008-01</date><risdate>2008</risdate><volume>43</volume><issue>1</issue><spage>141</spage><epage>149</epage><pages>141-149</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Aggressively scaling the supply voltage of SRAMs greatly minimizes their active and leakage power, a dominating portion of the total power in modern ICs. Hence, energy constrained applications, where performance requirements are secondary, benefit significantly from an SRAM that offers read and write functionality at the lowest possible voltage. However, bit-cells and architectures achieving very high density conventionally fail to operate at low voltages. This paper describes a high density SRAM in 65 nm CMOS that uses an 8T bit-cell to achieve a minimum operating voltage of 350 mV. Buffered read is used to ensure read stability, and peripheral control of both the bit-cell supply voltage and the read-buffer's foot voltage enable sub-T4 write and read without degrading the bit-cell's density. The plaguing area-offset tradeoff in modern sense-amplifiers is alleviated using redundancy, which reduces read errors by a factor of five compared to device up-sizing. At its lowest operating voltage, the entire 256 kb SRAM consumes 2.2 muW in leakage power.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2007.908005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2008-01, Vol.43 (1), p.141-149
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2007_908005
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Cache memories
CMOS memory circuits
Density
Design. Technologies. Operation analysis. Testing
Devices
Electric potential
Electronics
Exact sciences and technology
High density
Integrated circuits
Integrated circuits by function (including memories and processors)
Leakage
Leakage current
leakage currents
Logic arrays
Logic devices
Low voltage
low-power electronics
MOSFET circuits
Random access memory
Redundancy
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SRAM chips
Stability
Static random access memory
Threshold voltage
Voltage
Voltage control
title A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20256%20kb%2065%20nm%208T%20Subthreshold%20SRAM%20Employing%20Sense-Amplifier%20Redundancy&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Verma,%20N.&rft.date=2008-01&rft.volume=43&rft.issue=1&rft.spage=141&rft.epage=149&rft.pages=141-149&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2007.908005&rft_dat=%3Cproquest_cross%3E2544925331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-409bde87f48ee9d32ac258b3c66856ea6d6861f22d3a18b0c81b26392fb6e1c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912246432&rft_id=info:pmid/&rft_ieee_id=4443213&rfr_iscdi=true