Loading…
A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link
This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make i...
Saved in:
Published in: | IEEE journal of solid-state circuits 2012-07, Vol.47 (7), p.1784-1796 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3 |
container_end_page | 1796 |
container_issue | 7 |
container_start_page | 1784 |
container_title | IEEE journal of solid-state circuits |
container_volume | 47 |
creator | Rooseleer, B. Cosemans, S. Dehaene, W. |
description | This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications. |
doi_str_mv | 10.1109/JSSC.2012.2191316 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2012_2191316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6193183</ieee_id><sourcerecordid>1136492679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</originalsourceid><addsrcrecordid>eNpd0c-LEzEUB_BBFKyrf4B4eSCCh043L5mkk-PSdV2XLgq14G14k2SWbOdHTaaUetv_3NSWPXgKST7vy4Nvlr1HNkNk-vJutVrMOEM-46hRoHqRTVDKMse5-PUymzCGZa45Y6-zNzE-pmtRlDjJnq5ASei7KZSSwf3tnylwqWBT-3EKxUzA9u6SjHExTmHdjoFgOexh6WhDDw5-DHsX4N51QzjAOvr-Aa4PPXXewMK1LaxGqn3rxwNQb4Hgekfpcf_P0ZiyfL95m71qqI3u3fm8yNY3X34ubvPl96_fFlfL3BRKjjknpmpRSmmsNcYq5WpqrENWK1s2jDujdcGKQjBlnJXWysZqwzkapaRlJC6yz6fcbRh-71wcq85Hk7ak3g27WCEKVWiu5jrRj__Rx2EX-rRdhYxzMcd5iUnhSZkwxBhcU22D7ygcEqqOpVTHUqpjKdW5lDTz6ZxM0VDbBOqNj8-DXCUoNUvuw8l559zzt0ItsBTiLzqlkNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022371781</pqid></control><display><type>article</type><title>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rooseleer, B. ; Cosemans, S. ; Dehaene, W.</creator><creatorcontrib>Rooseleer, B. ; Cosemans, S. ; Dehaene, W.</creatorcontrib><description>This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2012.2191316</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active control ; Applied sciences ; Circuit properties ; Circuit stability ; Computer architecture ; Configurable timing ; Data links ; Decoders ; Decoding ; dynamic decoder ; dynamic stability ; Dynamics ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Latches ; local bit lines ; local sense amplifiers ; local word lines ; low leakage cell ; low power circuit design ; low swing signalling ; Magnetic and optical mass memories ; Microprocessors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sense amplifiers ; Signal convertors ; SRAM ; Stability ; Storage and reproduction of information ; Swing ; Timing ; Transistors ; variability-aware design</subject><ispartof>IEEE journal of solid-state circuits, 2012-07, Vol.47 (7), p.1784-1796</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</citedby><cites>FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6193183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26219590$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rooseleer, B.</creatorcontrib><creatorcontrib>Cosemans, S.</creatorcontrib><creatorcontrib>Dehaene, W.</creatorcontrib><title>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.</description><subject>Active control</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuit stability</subject><subject>Computer architecture</subject><subject>Configurable timing</subject><subject>Data links</subject><subject>Decoders</subject><subject>Decoding</subject><subject>dynamic decoder</subject><subject>dynamic stability</subject><subject>Dynamics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Latches</subject><subject>local bit lines</subject><subject>local sense amplifiers</subject><subject>local word lines</subject><subject>low leakage cell</subject><subject>low power circuit design</subject><subject>low swing signalling</subject><subject>Magnetic and optical mass memories</subject><subject>Microprocessors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sense amplifiers</subject><subject>Signal convertors</subject><subject>SRAM</subject><subject>Stability</subject><subject>Storage and reproduction of information</subject><subject>Swing</subject><subject>Timing</subject><subject>Transistors</subject><subject>variability-aware design</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpd0c-LEzEUB_BBFKyrf4B4eSCCh043L5mkk-PSdV2XLgq14G14k2SWbOdHTaaUetv_3NSWPXgKST7vy4Nvlr1HNkNk-vJutVrMOEM-46hRoHqRTVDKMse5-PUymzCGZa45Y6-zNzE-pmtRlDjJnq5ASei7KZSSwf3tnylwqWBT-3EKxUzA9u6SjHExTmHdjoFgOexh6WhDDw5-DHsX4N51QzjAOvr-Aa4PPXXewMK1LaxGqn3rxwNQb4Hgekfpcf_P0ZiyfL95m71qqI3u3fm8yNY3X34ubvPl96_fFlfL3BRKjjknpmpRSmmsNcYq5WpqrENWK1s2jDujdcGKQjBlnJXWysZqwzkapaRlJC6yz6fcbRh-71wcq85Hk7ak3g27WCEKVWiu5jrRj__Rx2EX-rRdhYxzMcd5iUnhSZkwxBhcU22D7ygcEqqOpVTHUqpjKdW5lDTz6ZxM0VDbBOqNj8-DXCUoNUvuw8l559zzt0ItsBTiLzqlkNo</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Rooseleer, B.</creator><creator>Cosemans, S.</creator><creator>Dehaene, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120701</creationdate><title>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</title><author>Rooseleer, B. ; Cosemans, S. ; Dehaene, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active control</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuit stability</topic><topic>Computer architecture</topic><topic>Configurable timing</topic><topic>Data links</topic><topic>Decoders</topic><topic>Decoding</topic><topic>dynamic decoder</topic><topic>dynamic stability</topic><topic>Dynamics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Latches</topic><topic>local bit lines</topic><topic>local sense amplifiers</topic><topic>local word lines</topic><topic>low leakage cell</topic><topic>low power circuit design</topic><topic>low swing signalling</topic><topic>Magnetic and optical mass memories</topic><topic>Microprocessors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sense amplifiers</topic><topic>Signal convertors</topic><topic>SRAM</topic><topic>Stability</topic><topic>Storage and reproduction of information</topic><topic>Swing</topic><topic>Timing</topic><topic>Transistors</topic><topic>variability-aware design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rooseleer, B.</creatorcontrib><creatorcontrib>Cosemans, S.</creatorcontrib><creatorcontrib>Dehaene, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rooseleer, B.</au><au>Cosemans, S.</au><au>Dehaene, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>47</volume><issue>7</issue><spage>1784</spage><epage>1796</epage><pages>1784-1796</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2012.2191316</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2012-07, Vol.47 (7), p.1784-1796 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2012_2191316 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Active control Applied sciences Circuit properties Circuit stability Computer architecture Configurable timing Data links Decoders Decoding dynamic decoder dynamic stability Dynamics Electric, optical and optoelectronic circuits Electronic circuits Electronics Energy consumption Exact sciences and technology Integrated circuits Integrated circuits by function (including memories and processors) Latches local bit lines local sense amplifiers local word lines low leakage cell low power circuit design low swing signalling Magnetic and optical mass memories Microprocessors Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sense amplifiers Signal convertors SRAM Stability Storage and reproduction of information Swing Timing Transistors variability-aware design |
title | A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2065%20nm,%20850%20MHz,%20256%20kbit,%204.3%20pJ/access,%20Ultra%20Low%20Leakage%20Power%20Memory%20Using%20Dynamic%20Cell%20Stability%20and%20a%20Dual%20Swing%20Data%20Link&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Rooseleer,%20B.&rft.date=2012-07-01&rft.volume=47&rft.issue=7&rft.spage=1784&rft.epage=1796&rft.pages=1784-1796&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2012.2191316&rft_dat=%3Cproquest_cross%3E1136492679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022371781&rft_id=info:pmid/&rft_ieee_id=6193183&rfr_iscdi=true |