Loading…

A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link

This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2012-07, Vol.47 (7), p.1784-1796
Main Authors: Rooseleer, B., Cosemans, S., Dehaene, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3
cites cdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3
container_end_page 1796
container_issue 7
container_start_page 1784
container_title IEEE journal of solid-state circuits
container_volume 47
creator Rooseleer, B.
Cosemans, S.
Dehaene, W.
description This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.
doi_str_mv 10.1109/JSSC.2012.2191316
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2012_2191316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6193183</ieee_id><sourcerecordid>1136492679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</originalsourceid><addsrcrecordid>eNpd0c-LEzEUB_BBFKyrf4B4eSCCh043L5mkk-PSdV2XLgq14G14k2SWbOdHTaaUetv_3NSWPXgKST7vy4Nvlr1HNkNk-vJutVrMOEM-46hRoHqRTVDKMse5-PUymzCGZa45Y6-zNzE-pmtRlDjJnq5ASei7KZSSwf3tnylwqWBT-3EKxUzA9u6SjHExTmHdjoFgOexh6WhDDw5-DHsX4N51QzjAOvr-Aa4PPXXewMK1LaxGqn3rxwNQb4Hgekfpcf_P0ZiyfL95m71qqI3u3fm8yNY3X34ubvPl96_fFlfL3BRKjjknpmpRSmmsNcYq5WpqrENWK1s2jDujdcGKQjBlnJXWysZqwzkapaRlJC6yz6fcbRh-71wcq85Hk7ak3g27WCEKVWiu5jrRj__Rx2EX-rRdhYxzMcd5iUnhSZkwxBhcU22D7ygcEqqOpVTHUqpjKdW5lDTz6ZxM0VDbBOqNj8-DXCUoNUvuw8l559zzt0ItsBTiLzqlkNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022371781</pqid></control><display><type>article</type><title>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rooseleer, B. ; Cosemans, S. ; Dehaene, W.</creator><creatorcontrib>Rooseleer, B. ; Cosemans, S. ; Dehaene, W.</creatorcontrib><description>This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2012.2191316</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active control ; Applied sciences ; Circuit properties ; Circuit stability ; Computer architecture ; Configurable timing ; Data links ; Decoders ; Decoding ; dynamic decoder ; dynamic stability ; Dynamics ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Latches ; local bit lines ; local sense amplifiers ; local word lines ; low leakage cell ; low power circuit design ; low swing signalling ; Magnetic and optical mass memories ; Microprocessors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sense amplifiers ; Signal convertors ; SRAM ; Stability ; Storage and reproduction of information ; Swing ; Timing ; Transistors ; variability-aware design</subject><ispartof>IEEE journal of solid-state circuits, 2012-07, Vol.47 (7), p.1784-1796</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</citedby><cites>FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6193183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26219590$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rooseleer, B.</creatorcontrib><creatorcontrib>Cosemans, S.</creatorcontrib><creatorcontrib>Dehaene, W.</creatorcontrib><title>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.</description><subject>Active control</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuit stability</subject><subject>Computer architecture</subject><subject>Configurable timing</subject><subject>Data links</subject><subject>Decoders</subject><subject>Decoding</subject><subject>dynamic decoder</subject><subject>dynamic stability</subject><subject>Dynamics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Latches</subject><subject>local bit lines</subject><subject>local sense amplifiers</subject><subject>local word lines</subject><subject>low leakage cell</subject><subject>low power circuit design</subject><subject>low swing signalling</subject><subject>Magnetic and optical mass memories</subject><subject>Microprocessors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sense amplifiers</subject><subject>Signal convertors</subject><subject>SRAM</subject><subject>Stability</subject><subject>Storage and reproduction of information</subject><subject>Swing</subject><subject>Timing</subject><subject>Transistors</subject><subject>variability-aware design</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpd0c-LEzEUB_BBFKyrf4B4eSCCh043L5mkk-PSdV2XLgq14G14k2SWbOdHTaaUetv_3NSWPXgKST7vy4Nvlr1HNkNk-vJutVrMOEM-46hRoHqRTVDKMse5-PUymzCGZa45Y6-zNzE-pmtRlDjJnq5ASei7KZSSwf3tnylwqWBT-3EKxUzA9u6SjHExTmHdjoFgOexh6WhDDw5-DHsX4N51QzjAOvr-Aa4PPXXewMK1LaxGqn3rxwNQb4Hgekfpcf_P0ZiyfL95m71qqI3u3fm8yNY3X34ubvPl96_fFlfL3BRKjjknpmpRSmmsNcYq5WpqrENWK1s2jDujdcGKQjBlnJXWysZqwzkapaRlJC6yz6fcbRh-71wcq85Hk7ak3g27WCEKVWiu5jrRj__Rx2EX-rRdhYxzMcd5iUnhSZkwxBhcU22D7ygcEqqOpVTHUqpjKdW5lDTz6ZxM0VDbBOqNj8-DXCUoNUvuw8l559zzt0ItsBTiLzqlkNo</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Rooseleer, B.</creator><creator>Cosemans, S.</creator><creator>Dehaene, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120701</creationdate><title>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</title><author>Rooseleer, B. ; Cosemans, S. ; Dehaene, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active control</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuit stability</topic><topic>Computer architecture</topic><topic>Configurable timing</topic><topic>Data links</topic><topic>Decoders</topic><topic>Decoding</topic><topic>dynamic decoder</topic><topic>dynamic stability</topic><topic>Dynamics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Latches</topic><topic>local bit lines</topic><topic>local sense amplifiers</topic><topic>local word lines</topic><topic>low leakage cell</topic><topic>low power circuit design</topic><topic>low swing signalling</topic><topic>Magnetic and optical mass memories</topic><topic>Microprocessors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sense amplifiers</topic><topic>Signal convertors</topic><topic>SRAM</topic><topic>Stability</topic><topic>Storage and reproduction of information</topic><topic>Swing</topic><topic>Timing</topic><topic>Transistors</topic><topic>variability-aware design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rooseleer, B.</creatorcontrib><creatorcontrib>Cosemans, S.</creatorcontrib><creatorcontrib>Dehaene, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rooseleer, B.</au><au>Cosemans, S.</au><au>Dehaene, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>47</volume><issue>7</issue><spage>1784</spage><epage>1796</epage><pages>1784-1796</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper presents the design of a high-speed ultra low power SRAM memory. Divided bit lines improve dynamic cell stability while at the same time decreasing active energy consumption. To limit unnecessary activity, word lines are divided on a word-by-word basis. Local write sense amplifiers make it possible to use low swing signaling on the global bit lines. To control this architecture, a distributed decoder is used. The use of dual swing data links on the global bit lines limits the impact of local write sense amplifier offset on the overall energy consumption. Using high threshold transistors in the memory cells reduces static power consumption and improves the cell's read stability. A partly dynamic decoder structure increases memory speed at a very low energy cost. The timing of this memory is made configurable to be able to cope with PVT variations without increasing design margins. The designed 256 kbit memory was fabricated in a 65 nm triple-V T process. It operates up to a speed of 850 MHz while only consuming 4.3 pJ/access for a word length of 32 bit. Standby leakage power is 25.2 W. This memory clearly outperforms other state-of-the-art designs when targeting high-speed, low-leakage and low active energy applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2012.2191316</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2012-07, Vol.47 (7), p.1784-1796
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2012_2191316
source IEEE Electronic Library (IEL) Journals
subjects Active control
Applied sciences
Circuit properties
Circuit stability
Computer architecture
Configurable timing
Data links
Decoders
Decoding
dynamic decoder
dynamic stability
Dynamics
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Energy consumption
Exact sciences and technology
Integrated circuits
Integrated circuits by function (including memories and processors)
Latches
local bit lines
local sense amplifiers
local word lines
low leakage cell
low power circuit design
low swing signalling
Magnetic and optical mass memories
Microprocessors
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sense amplifiers
Signal convertors
SRAM
Stability
Storage and reproduction of information
Swing
Timing
Transistors
variability-aware design
title A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2065%20nm,%20850%20MHz,%20256%20kbit,%204.3%20pJ/access,%20Ultra%20Low%20Leakage%20Power%20Memory%20Using%20Dynamic%20Cell%20Stability%20and%20a%20Dual%20Swing%20Data%20Link&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Rooseleer,%20B.&rft.date=2012-07-01&rft.volume=47&rft.issue=7&rft.spage=1784&rft.epage=1796&rft.pages=1784-1796&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2012.2191316&rft_dat=%3Cproquest_cross%3E1136492679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2a06b3855cddccd66ebafde10b6d8f02ec994044306ced5dd5fd9c221c665d0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022371781&rft_id=info:pmid/&rft_ieee_id=6193183&rfr_iscdi=true