Loading…
A 130.7- \hbox^ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology
A 32-Gb ReRAM test chip has been developed in a 24-nm process, with a diode as the selection device and metal oxide as the switching element. The memory array is constructed with cross-point architecture to allow multiple memory layers stacked above the supporting circuitry and minimize the circuit...
Saved in:
Published in: | IEEE journal of solid-state circuits 2014-01, Vol.49 (1), p.140-153 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3 |
container_end_page | 153 |
container_issue | 1 |
container_start_page | 140 |
container_title | IEEE journal of solid-state circuits |
container_volume | 49 |
creator | Tz-yi Liu Tian Hong Yan Scheuerlein, Roy Yingchang Chen Lee, Jeffrey KoonYee Balakrishnan, Gopinath Yee, Gordon Zhang, Henry Yap, Alex Ouyang, Jingwen Sasaki, Takahiko Al-Shamma, Ali Chen, Chinyu Gupta, Mayank Hilton, Greg Kathuria, Achal Lai, Vincent Matsumoto, Masahide Nigam, Anurag Pai, Anil Pakhale, Jayesh Chang Hua Siau Xiaoxia Wu Yibo Yin Nagel, Nicolas Tanaka, Yoichiro Higashitani, Masaaki Minvielle, Tim Gorla, Chandu Tsukamoto, Takayuki Yamaguchi, Takeshi Okajima, Mutsumi Okamura, Takayuki Takase, Satoru Inoue, Hirofumi Fasoli, Luca |
description | A 32-Gb ReRAM test chip has been developed in a 24-nm process, with a diode as the selection device and metal oxide as the switching element. The memory array is constructed with cross-point architecture to allow multiple memory layers stacked above the supporting circuitry and minimize the circuit area overhead. Die efficiency is further improved by sharing wordlines and bitlines between adjacent blocks. As the number of sense amplifiers under the memory array is limited, a pipelined array control scheme is adopted to compensate the performance impact while utilizing the fast switching time of ReRAM cells. With the chip current consumption being dominated by the array leakage and sensitive to array bias and operating conditions, a charge pump stage control scheme is introduced to dynamically adapt to the operating conditions for optimal power consumption. Smart Read during sensing and leakage current compensation scheme during programming are applied to the large-block architecture and achieve a chip density that is several orders of magnitude higher than prior ReRAM developments. |
doi_str_mv | 10.1109/JSSC.2013.2280296 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2013_2280296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6605602</ieee_id><sourcerecordid>10_1109_JSSC_2013_2280296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3</originalsourceid><addsrcrecordid>eNo9kFFLw0AQhA9RMFZ_gPhyf-Di7uUud3kMtValRWgr-CCG5LJnI00jCUjz701o8WlYZmYZPsZuEUJESO5f1utpKAGjUEoLMonPWIBaW4Emej9nAQBakUiAS3bVdd_DqZTFgM1SjhGERvCPbdEcPrkUi7ynlkdSzAu-olW65Euqm7bnD_RbOeLVnksl9jXfkNvum13z1V-zC5_vOro56YS9Pc420yexeJ0_T9OFcMNIKRQQWPCWyjLRxsvckTU-BgWOtEqc1WhgMCX52JPBQmlbFsNWo6n0hY8mDI9_Xdt0XUs--2mrOm_7DCEbOWQjh2zkkJ04DJ27Y6ciov98HIOOQUZ_qBRVzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 130.7- \hbox^ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology</title><source>IEEE Xplore (Online service)</source><creator>Tz-yi Liu ; Tian Hong Yan ; Scheuerlein, Roy ; Yingchang Chen ; Lee, Jeffrey KoonYee ; Balakrishnan, Gopinath ; Yee, Gordon ; Zhang, Henry ; Yap, Alex ; Ouyang, Jingwen ; Sasaki, Takahiko ; Al-Shamma, Ali ; Chen, Chinyu ; Gupta, Mayank ; Hilton, Greg ; Kathuria, Achal ; Lai, Vincent ; Matsumoto, Masahide ; Nigam, Anurag ; Pai, Anil ; Pakhale, Jayesh ; Chang Hua Siau ; Xiaoxia Wu ; Yibo Yin ; Nagel, Nicolas ; Tanaka, Yoichiro ; Higashitani, Masaaki ; Minvielle, Tim ; Gorla, Chandu ; Tsukamoto, Takayuki ; Yamaguchi, Takeshi ; Okajima, Mutsumi ; Okamura, Takayuki ; Takase, Satoru ; Inoue, Hirofumi ; Fasoli, Luca</creator><creatorcontrib>Tz-yi Liu ; Tian Hong Yan ; Scheuerlein, Roy ; Yingchang Chen ; Lee, Jeffrey KoonYee ; Balakrishnan, Gopinath ; Yee, Gordon ; Zhang, Henry ; Yap, Alex ; Ouyang, Jingwen ; Sasaki, Takahiko ; Al-Shamma, Ali ; Chen, Chinyu ; Gupta, Mayank ; Hilton, Greg ; Kathuria, Achal ; Lai, Vincent ; Matsumoto, Masahide ; Nigam, Anurag ; Pai, Anil ; Pakhale, Jayesh ; Chang Hua Siau ; Xiaoxia Wu ; Yibo Yin ; Nagel, Nicolas ; Tanaka, Yoichiro ; Higashitani, Masaaki ; Minvielle, Tim ; Gorla, Chandu ; Tsukamoto, Takayuki ; Yamaguchi, Takeshi ; Okajima, Mutsumi ; Okamura, Takayuki ; Takase, Satoru ; Inoue, Hirofumi ; Fasoli, Luca</creatorcontrib><description>A 32-Gb ReRAM test chip has been developed in a 24-nm process, with a diode as the selection device and metal oxide as the switching element. The memory array is constructed with cross-point architecture to allow multiple memory layers stacked above the supporting circuitry and minimize the circuit area overhead. Die efficiency is further improved by sharing wordlines and bitlines between adjacent blocks. As the number of sense amplifiers under the memory array is limited, a pipelined array control scheme is adopted to compensate the performance impact while utilizing the fast switching time of ReRAM cells. With the chip current consumption being dominated by the array leakage and sensitive to array bias and operating conditions, a charge pump stage control scheme is introduced to dynamically adapt to the operating conditions for optimal power consumption. Smart Read during sensing and leakage current compensation scheme during programming are applied to the large-block architecture and achieve a chip density that is several orders of magnitude higher than prior ReRAM developments.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2013.2280296</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D architecture ; Arrays ; Charge pump ; cross-point ; current compliance ; leakage current compensation ; Leakage currents ; multiple-layer ; nonvolatile memory ; Registers ; ReRAM ; Sensors ; sneak path ; Switches ; Transistors</subject><ispartof>IEEE journal of solid-state circuits, 2014-01, Vol.49 (1), p.140-153</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3</citedby><cites>FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6605602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tz-yi Liu</creatorcontrib><creatorcontrib>Tian Hong Yan</creatorcontrib><creatorcontrib>Scheuerlein, Roy</creatorcontrib><creatorcontrib>Yingchang Chen</creatorcontrib><creatorcontrib>Lee, Jeffrey KoonYee</creatorcontrib><creatorcontrib>Balakrishnan, Gopinath</creatorcontrib><creatorcontrib>Yee, Gordon</creatorcontrib><creatorcontrib>Zhang, Henry</creatorcontrib><creatorcontrib>Yap, Alex</creatorcontrib><creatorcontrib>Ouyang, Jingwen</creatorcontrib><creatorcontrib>Sasaki, Takahiko</creatorcontrib><creatorcontrib>Al-Shamma, Ali</creatorcontrib><creatorcontrib>Chen, Chinyu</creatorcontrib><creatorcontrib>Gupta, Mayank</creatorcontrib><creatorcontrib>Hilton, Greg</creatorcontrib><creatorcontrib>Kathuria, Achal</creatorcontrib><creatorcontrib>Lai, Vincent</creatorcontrib><creatorcontrib>Matsumoto, Masahide</creatorcontrib><creatorcontrib>Nigam, Anurag</creatorcontrib><creatorcontrib>Pai, Anil</creatorcontrib><creatorcontrib>Pakhale, Jayesh</creatorcontrib><creatorcontrib>Chang Hua Siau</creatorcontrib><creatorcontrib>Xiaoxia Wu</creatorcontrib><creatorcontrib>Yibo Yin</creatorcontrib><creatorcontrib>Nagel, Nicolas</creatorcontrib><creatorcontrib>Tanaka, Yoichiro</creatorcontrib><creatorcontrib>Higashitani, Masaaki</creatorcontrib><creatorcontrib>Minvielle, Tim</creatorcontrib><creatorcontrib>Gorla, Chandu</creatorcontrib><creatorcontrib>Tsukamoto, Takayuki</creatorcontrib><creatorcontrib>Yamaguchi, Takeshi</creatorcontrib><creatorcontrib>Okajima, Mutsumi</creatorcontrib><creatorcontrib>Okamura, Takayuki</creatorcontrib><creatorcontrib>Takase, Satoru</creatorcontrib><creatorcontrib>Inoue, Hirofumi</creatorcontrib><creatorcontrib>Fasoli, Luca</creatorcontrib><title>A 130.7- \hbox^ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A 32-Gb ReRAM test chip has been developed in a 24-nm process, with a diode as the selection device and metal oxide as the switching element. The memory array is constructed with cross-point architecture to allow multiple memory layers stacked above the supporting circuitry and minimize the circuit area overhead. Die efficiency is further improved by sharing wordlines and bitlines between adjacent blocks. As the number of sense amplifiers under the memory array is limited, a pipelined array control scheme is adopted to compensate the performance impact while utilizing the fast switching time of ReRAM cells. With the chip current consumption being dominated by the array leakage and sensitive to array bias and operating conditions, a charge pump stage control scheme is introduced to dynamically adapt to the operating conditions for optimal power consumption. Smart Read during sensing and leakage current compensation scheme during programming are applied to the large-block architecture and achieve a chip density that is several orders of magnitude higher than prior ReRAM developments.</description><subject>3-D architecture</subject><subject>Arrays</subject><subject>Charge pump</subject><subject>cross-point</subject><subject>current compliance</subject><subject>leakage current compensation</subject><subject>Leakage currents</subject><subject>multiple-layer</subject><subject>nonvolatile memory</subject><subject>Registers</subject><subject>ReRAM</subject><subject>Sensors</subject><subject>sneak path</subject><subject>Switches</subject><subject>Transistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLw0AQhA9RMFZ_gPhyf-Di7uUud3kMtValRWgr-CCG5LJnI00jCUjz701o8WlYZmYZPsZuEUJESO5f1utpKAGjUEoLMonPWIBaW4Emej9nAQBakUiAS3bVdd_DqZTFgM1SjhGERvCPbdEcPrkUi7ynlkdSzAu-olW65Euqm7bnD_RbOeLVnksl9jXfkNvum13z1V-zC5_vOro56YS9Pc420yexeJ0_T9OFcMNIKRQQWPCWyjLRxsvckTU-BgWOtEqc1WhgMCX52JPBQmlbFsNWo6n0hY8mDI9_Xdt0XUs--2mrOm_7DCEbOWQjh2zkkJ04DJ27Y6ciov98HIOOQUZ_qBRVzw</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Tz-yi Liu</creator><creator>Tian Hong Yan</creator><creator>Scheuerlein, Roy</creator><creator>Yingchang Chen</creator><creator>Lee, Jeffrey KoonYee</creator><creator>Balakrishnan, Gopinath</creator><creator>Yee, Gordon</creator><creator>Zhang, Henry</creator><creator>Yap, Alex</creator><creator>Ouyang, Jingwen</creator><creator>Sasaki, Takahiko</creator><creator>Al-Shamma, Ali</creator><creator>Chen, Chinyu</creator><creator>Gupta, Mayank</creator><creator>Hilton, Greg</creator><creator>Kathuria, Achal</creator><creator>Lai, Vincent</creator><creator>Matsumoto, Masahide</creator><creator>Nigam, Anurag</creator><creator>Pai, Anil</creator><creator>Pakhale, Jayesh</creator><creator>Chang Hua Siau</creator><creator>Xiaoxia Wu</creator><creator>Yibo Yin</creator><creator>Nagel, Nicolas</creator><creator>Tanaka, Yoichiro</creator><creator>Higashitani, Masaaki</creator><creator>Minvielle, Tim</creator><creator>Gorla, Chandu</creator><creator>Tsukamoto, Takayuki</creator><creator>Yamaguchi, Takeshi</creator><creator>Okajima, Mutsumi</creator><creator>Okamura, Takayuki</creator><creator>Takase, Satoru</creator><creator>Inoue, Hirofumi</creator><creator>Fasoli, Luca</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201401</creationdate><title>A 130.7- \hbox^ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology</title><author>Tz-yi Liu ; Tian Hong Yan ; Scheuerlein, Roy ; Yingchang Chen ; Lee, Jeffrey KoonYee ; Balakrishnan, Gopinath ; Yee, Gordon ; Zhang, Henry ; Yap, Alex ; Ouyang, Jingwen ; Sasaki, Takahiko ; Al-Shamma, Ali ; Chen, Chinyu ; Gupta, Mayank ; Hilton, Greg ; Kathuria, Achal ; Lai, Vincent ; Matsumoto, Masahide ; Nigam, Anurag ; Pai, Anil ; Pakhale, Jayesh ; Chang Hua Siau ; Xiaoxia Wu ; Yibo Yin ; Nagel, Nicolas ; Tanaka, Yoichiro ; Higashitani, Masaaki ; Minvielle, Tim ; Gorla, Chandu ; Tsukamoto, Takayuki ; Yamaguchi, Takeshi ; Okajima, Mutsumi ; Okamura, Takayuki ; Takase, Satoru ; Inoue, Hirofumi ; Fasoli, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3-D architecture</topic><topic>Arrays</topic><topic>Charge pump</topic><topic>cross-point</topic><topic>current compliance</topic><topic>leakage current compensation</topic><topic>Leakage currents</topic><topic>multiple-layer</topic><topic>nonvolatile memory</topic><topic>Registers</topic><topic>ReRAM</topic><topic>Sensors</topic><topic>sneak path</topic><topic>Switches</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tz-yi Liu</creatorcontrib><creatorcontrib>Tian Hong Yan</creatorcontrib><creatorcontrib>Scheuerlein, Roy</creatorcontrib><creatorcontrib>Yingchang Chen</creatorcontrib><creatorcontrib>Lee, Jeffrey KoonYee</creatorcontrib><creatorcontrib>Balakrishnan, Gopinath</creatorcontrib><creatorcontrib>Yee, Gordon</creatorcontrib><creatorcontrib>Zhang, Henry</creatorcontrib><creatorcontrib>Yap, Alex</creatorcontrib><creatorcontrib>Ouyang, Jingwen</creatorcontrib><creatorcontrib>Sasaki, Takahiko</creatorcontrib><creatorcontrib>Al-Shamma, Ali</creatorcontrib><creatorcontrib>Chen, Chinyu</creatorcontrib><creatorcontrib>Gupta, Mayank</creatorcontrib><creatorcontrib>Hilton, Greg</creatorcontrib><creatorcontrib>Kathuria, Achal</creatorcontrib><creatorcontrib>Lai, Vincent</creatorcontrib><creatorcontrib>Matsumoto, Masahide</creatorcontrib><creatorcontrib>Nigam, Anurag</creatorcontrib><creatorcontrib>Pai, Anil</creatorcontrib><creatorcontrib>Pakhale, Jayesh</creatorcontrib><creatorcontrib>Chang Hua Siau</creatorcontrib><creatorcontrib>Xiaoxia Wu</creatorcontrib><creatorcontrib>Yibo Yin</creatorcontrib><creatorcontrib>Nagel, Nicolas</creatorcontrib><creatorcontrib>Tanaka, Yoichiro</creatorcontrib><creatorcontrib>Higashitani, Masaaki</creatorcontrib><creatorcontrib>Minvielle, Tim</creatorcontrib><creatorcontrib>Gorla, Chandu</creatorcontrib><creatorcontrib>Tsukamoto, Takayuki</creatorcontrib><creatorcontrib>Yamaguchi, Takeshi</creatorcontrib><creatorcontrib>Okajima, Mutsumi</creatorcontrib><creatorcontrib>Okamura, Takayuki</creatorcontrib><creatorcontrib>Takase, Satoru</creatorcontrib><creatorcontrib>Inoue, Hirofumi</creatorcontrib><creatorcontrib>Fasoli, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tz-yi Liu</au><au>Tian Hong Yan</au><au>Scheuerlein, Roy</au><au>Yingchang Chen</au><au>Lee, Jeffrey KoonYee</au><au>Balakrishnan, Gopinath</au><au>Yee, Gordon</au><au>Zhang, Henry</au><au>Yap, Alex</au><au>Ouyang, Jingwen</au><au>Sasaki, Takahiko</au><au>Al-Shamma, Ali</au><au>Chen, Chinyu</au><au>Gupta, Mayank</au><au>Hilton, Greg</au><au>Kathuria, Achal</au><au>Lai, Vincent</au><au>Matsumoto, Masahide</au><au>Nigam, Anurag</au><au>Pai, Anil</au><au>Pakhale, Jayesh</au><au>Chang Hua Siau</au><au>Xiaoxia Wu</au><au>Yibo Yin</au><au>Nagel, Nicolas</au><au>Tanaka, Yoichiro</au><au>Higashitani, Masaaki</au><au>Minvielle, Tim</au><au>Gorla, Chandu</au><au>Tsukamoto, Takayuki</au><au>Yamaguchi, Takeshi</au><au>Okajima, Mutsumi</au><au>Okamura, Takayuki</au><au>Takase, Satoru</au><au>Inoue, Hirofumi</au><au>Fasoli, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 130.7- \hbox^ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2014-01</date><risdate>2014</risdate><volume>49</volume><issue>1</issue><spage>140</spage><epage>153</epage><pages>140-153</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A 32-Gb ReRAM test chip has been developed in a 24-nm process, with a diode as the selection device and metal oxide as the switching element. The memory array is constructed with cross-point architecture to allow multiple memory layers stacked above the supporting circuitry and minimize the circuit area overhead. Die efficiency is further improved by sharing wordlines and bitlines between adjacent blocks. As the number of sense amplifiers under the memory array is limited, a pipelined array control scheme is adopted to compensate the performance impact while utilizing the fast switching time of ReRAM cells. With the chip current consumption being dominated by the array leakage and sensitive to array bias and operating conditions, a charge pump stage control scheme is introduced to dynamically adapt to the operating conditions for optimal power consumption. Smart Read during sensing and leakage current compensation scheme during programming are applied to the large-block architecture and achieve a chip density that is several orders of magnitude higher than prior ReRAM developments.</abstract><pub>IEEE</pub><doi>10.1109/JSSC.2013.2280296</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2014-01, Vol.49 (1), p.140-153 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2013_2280296 |
source | IEEE Xplore (Online service) |
subjects | 3-D architecture Arrays Charge pump cross-point current compliance leakage current compensation Leakage currents multiple-layer nonvolatile memory Registers ReRAM Sensors sneak path Switches Transistors |
title | A 130.7- \hbox^ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20130.7-%20%5Chbox%5E%202-Layer%2032-Gb%20ReRAM%20Memory%20Device%20in%2024-nm%20Technology&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Tz-yi%20Liu&rft.date=2014-01&rft.volume=49&rft.issue=1&rft.spage=140&rft.epage=153&rft.pages=140-153&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2013.2280296&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSSC_2013_2280296%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1102-40e080f8edd957f2ace87f6040ce549c85170edd2ef6fe71b458db00175edfbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6605602&rfr_iscdi=true |